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5.1. LIMITATIONS OF FIRST LAW OF THERMODYNAMICS AND INTRODUCTION
TO SECOND LAW

It has been observed that energy can flow from a system in the form of heat or work. The
first law of thermodynamics sets no limit to the amount of the total energy of a system which can
be caused to flow out as work. A limit is imposed, however, as a result of the principle enunciated
in the second law of thermodynamics which states that heat will flow naturally from one energy
reservoir to another at a lower temperature, but not in opposite direction without assistance. This
is very important because a heat engine operates between two energy reservoirs at different tem-
peratures.

Further the first law of thermodynamics establishes equivalence between the quantity of
heat used and the mechanical work but does not specify the conditions under which conversion of
heat into work is possible, neither the direction in which heat transfer can take place. This gap
has been bridged by the second law of thermodynamics.

5.2. PERFORMANCE OF HEAT ENGINES AND REVERSED HEAT ENGINES

Refer Fig. 5.1 (a). A heat engine is used to produce the maximum work transfer from a
given positive heat transfer. The measure of success is called the thermal efficiency of the engine
and is defined by the ratio :

w

Thermal efficiency, 1, = o ..(8.1)
1

where, W = Net work transfer from the engine, and
@, = Heat transfer to engine.

For a reversed heat engine [Fig. 5.1 (b)] acting as a refrigerator when the purpose is to
achieve the maximum heat transfer from the cold reservoir, the measure of success is called the
co-efficient of performance (C.O.P.). It is defined by the ratio :

227



228 ENGINEERING THERMODYNAMICS

@
w
where, @, = Heat transfer from cold reservoir, and

W = The net work transfer to the refrigerator.

For a reversed heat engine [Fig. 5.1 (b)] acting as a heat pump, the measure of success is
again called the co-efficient of performance. It is defined by the ratio :

Q

Co-efficient of performance, (C.0.P.) = (5.2)

Co-efficient of performance, (C.0.P.}. yymp = W ...{6.3)
where, &, = Heat transfer to hot reservoir, and
W = Net work transfer to the heat pump.
Hot Hot
reservoir reservoir
& 4Q,=Q,+W
W=(Q,-Q,) w
Heat F — .‘ 2 Heat pUMD | o
engine or refrigerator
A 02 F 3 Qz
Cold Cold
reservoir reservoir
(a) (b)
Heat engine Heat pump or refrigerator
Fig. 5.1

In all the above three cases application of the first law gives the relation @, — @, =W, and
this can be used to rewrite the expressions for thermal efficiency and co-efficient of performance
solely in terms of the heat transfers.

T = QIQ;IQ2 (5.4)
(C.OP),, = Qﬁz% {5.5)
%)
(COP)y s = ik .(5.6)
feat pump Q1_Q2

It may be seen that v, is always less than unity and (C.O.P.), ., pump is always greater than
unity.

5.3. REVERSIBLE PROCESSES

A reversible process should fulfill the following conditions :
1. The process should not involve friction of any kind.
2. Heat transfer should not take place with finite temperature difference.
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3. The energy transfer as heat and work during the forward process should be identically
equal {o energy transfer as heat and work during the reversal of the process.

4. There should be no free or unrestricted expansion.

5. There should be no mixing of the fluids.

6. The process must proceed in a series of equilibrium states.
Some examples of ideal reversible processes are :

(i) Frictionless adiabatic expansion or compression ;

(i) Frictionless isothermal expansion or compression ;
(iii) Condensation and boiling of liquids.

Some examples of irreversible processes are :

(i} Combustion process ; (ii) Mixing of two fluids ;
(iii) All processes involving friction ; {iv) Flow of electric current through a resistance ;
(v} Heat flow from a higher temperature to lower temperature.

Reversible processes are preferred because the devices which produce work such as engines
and turbines, reversible process of the working fluid delivers more work than the corresponding
irreversible processes. Also in case of fans, compressors, refrigerators and pumps less power input
is required when reversible processes are used in place of corresponding irreversible ones.

In thermodynamic analysis concept of reversibility, though hypothetical, is very important
because a reversible process is the most efficient process. Only reversible processes can be truely
represented on property diagrams. Thermodynamic reversibility can only be approached but can
rever be achieved. Thus the main task of the engineer is to design the system which will evolve
approximate reversible processes.

5.4. STATEMENTS OF SECOND LAW OF THERMODYNAMICS

The second law eof thermodynamics has been enunciated meticulously by Clausius, Kelvin
and Planck in slightly different words although both statements are basically identical. Each
statement is based on an irreversible process. The first considers transformation of heat between
two thermal reservoirs while the second considers the transformation of heat into work.

5.4.1. Clausius Statement

“It is impossible for a self acting machine working in a cyelic process unaided by any
external agency, to convey heat from a body at a lower temperature to a body at a higher
temperature”.

In other words, heat of, itself, cannot flow from a colder to a hotter body.

5.4.2. Kelvin-Planck Statement

“It is impossible to construct an engine, which while operating in a cycle produces no other
effect except to extract heat from a single reservoir and do eguivalent amount of work”.

Although the Clausius and Kelvin-Planck statements appear to be different, they are really
equivalent in the sense that a wviolatior of either statement implies violation of other.

5.4.3. Equivalence of Clausius Statement to the Kelvin-Planck Statement

Refer Fig. 5.2. Consider a higher temperature reservoir T, and low temperature reservoir
T,. Fig. 5.2 shows a heat pump which requires no work and transfers an amount of @, from a low
temperature to a higher temperature reservoir (in violation of the Clausius statement). Let an
amount of heat @, (greater than @,) be transferred from high temperature reservoir to heat engine
which devolops a net work, W= @, — @, and rejects @, to the low temperature reservoir. Since
there is no heat interaction with the low temperature, it can be eliminated. The combined system
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of the heat engine and heat pump acts then like a heat engine exchanging heat with a single
reservoir, which is the violation of the Kelvin-Planck statement.

High temp. reservoir, T,

4Q, YQ,
e R : i
System ' |
boundary ™! i
! Heat Heat | W=0,-Q,
i pump engine F,
! :
! :
____________________ S
JLQZ VQZ

Low temp. reservoir, T,

Fig. 5.2. Equivalence of Clausius statement to Kelvin-Planck statement.

5.5. PERPETUAL MOTION MACHINE OF THE SECOND KIND

-~ A machine which voilates the first law of thermodynamics is called the perpetual motion
machine of the first kind (PMM1). Such a machine creates its own energy from nothing
and does not exist.

Thermal
reservoir

Perpetual _
motion machine w=Q

Fig. 5.3. Perpetual motion machine of second kind (PMM2),

—  Without violating the first law, a machine can be imagined which would continuously
absorb heat from a single thermal reservoir and would convert this keat completely
into work. The efficiency of such a machine would be 100 per cent. This machine is
called the perpetual motion machine of the second kind (PMM2).

Fig. 5.3 shows the perpetual motion machine of the second kind. A machine of this kind will
evidently violates the second law of thermodynamics.
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5.6. THERMODYNAMIC TEMPERATURE

Take the case of reversible heat engine operating between two reservoirs. Its thermal effi-
ciency is given by the eqn. (5.4),

@ -Q

Qy
= —— = 1 - =
e & 2}
The temperature of a reservoir remains uniform and fixed irrespective of heat transfer.
This means that reservoir has only one property defining its state and the heat transfer from a
reservoir is some function of that property, temperature. Thus Q = ¢ (K), where K is the tempera-
ture of reservoir. The choice of the function is universally aecepted to be such that the relation,

@ _ HKy) & _T7

Q, = oK, becomes Q, _T2 (5.7
where T, and T, are the thermodynamic temperatures of the reservoirs. Zero thermodynamic
temperature (that temperature to which T, tends, as the heat transfer @, tends to zero) has never
been attained and one form of third law of thermodynamics is the statement -

“The temperature of a system cannot be reduced to zero in a finite number of
processes.”

After establishing the concept of a zero thermodynamic temperature, a reference reservoir
is chosen and assigned a numerical value of temperature. Any other thermodynamic temperature
may now be defined in terms of reference value and the heat transfers that would occur with
reversible engine,

e
T=T,, —* (5.8)
f Qref.

The determination of thermodynamic temperature cannot be made in this way as it is not
possible to build a reversible engine. Temperatures are determined by the application of thermody-
namic relations to other measurements.

The SI unit of thermodynamic temperature is the kelvin (K). The relation between thermo-
dynamic temperature and celsius scale, which is in common use is :

Thermodynamic temperature = Celsius temperature + 273.15°.

of thermodynamic

The kelvin unit of thermodynamic temperature is the fraction 731 15

temperature of ‘Triple point’ of water.

5.7. CLAUSIUS INEQUALITY

When a reversible engine uses more than two reservoirs the third or higher numbered
reservoirs will not be equal in temperature to the original two. Consideration of expression for
efficiency of the engine indicates that for maximum efficiency, all the heat transfer should take
place at maximum or minimum reservoir temperatures. Any intermediate reservoir used will,
therefore, lower the efficiency of the heat engine. Practical engine cycles often involve continu-
ous changes of temperature during heat transfer. A relationship among processes in which
these sort of changes occur is necessary. The ideal approach to a cycle in which temperature
continually changes is to consider the system to be in communication with a large number of
reservoirs in procession. Each reservoir is considered to have a temperature differing by a
small amount from the previous one. In such a model it is possible to imagine that each
reservoir is replaced by a reversible heat engine in communication with standard reservoirs
at same temperature T. Fig. 5.4 shows one example to this substitution.
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T+8T Ta

W,

Reversibie

W f a// heat engine

Original
system

. \.\_\ o New system
boundary | 4~ boundary
! .

~~~~~~~

{a) (&)
Fig. 5.4. The clausius inequality.

The system to which the heat transfer is effected is neither concerned with the source of
energy it receives nor with the method of transfer, save that it must be reversible. Associated with
the small heat transfer dQ to the original system is a small work transfer dW and for this system
the first law gives

Z (8Q - 3W)=0 (5.9

cycle
Now consider the engine replacing the reservoirs and apply the second law to the new
system in Fig. 5.4 (b). If the new system is not a perpetual motion machine of second kind, no
positive work transfer is possible with a single reservoir.

Y W -5Wp)<0

Therefore, ..(5.10)
cycle
But by the definition of thermodynamic temperature in equation (5.8)
SWg _ 8o - 3Q - -T
5Q 5Q T .{6.11)
and by combination of eqns. (5.9), (5.10) and (5.11)
Ty Z [—] < 0 but 7, # 0 and therefore ;
cycle
5Q
2 (“T‘ <0 (5.12)
cycle

This is known as Clausius inequality.
Let us now consider the case of a reversible engine for which

5 (e

cycle
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reverse the engine and for the reversible heat pump obtained it is possible to develop the

EXpI‘ESSiOD y
( 2

cycle
The negative sign indicates that the heat transfers have all reversed in direction when the
engine was reversed. This means that for the same machine we have two relations which are only

satisfied if in the reversible case,
Q
)y (?J‘-‘O (5.13)

cycle

For a reversible case, as the number of reservoirs used tends to infinity, the limiting value

of the summation will be
& )
2 {T =0

cycle
In words, the Clausius inequality may be expressed as follows :
“When a system performs a reversible cycle, then
&
% (F)-o
T
cyele
but when the cycle is not reversible

5 ()

eyele

5.8. CARNOT CYCLE

The cycle was first suggested by a French engineer Sadi Carnot in 1824 which works on
reversible cycle and is known as Carnof cycle.

Any fluid may be used to operate the Carnot cycle (Fig. 5.5) which is performed in an engine
cylinder the head of which is supposed alternatively to be perfect conductor or a perfect insulator of
a heat. Heat is caused to flow into the cylinder by the application of high temperature energy
source to the cylinder head during expansion, and to flow from the cylinder by the application of a
lower temperature energy source to the head during compression.

Heat source

/ atT,

Cylinder

¢

i

Piston

—tF

Sink at T,

(a)
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Pt 1 Isothermal p4 1
expansion Iscthermal
T, compression
c
= -
o & ) N
= Adiabatic = Adiabatic
88 expansion 25 compression
35 T &
< o < o
T2 T2
isothermal 3 Isothermal 3
comprassion expansion
v v
(b) {e)
Carnot engine cycle Carnot heat pump cycle
Fig. 5.5

The assumptions made for describing the working of the Carnot engine are as follows:

(i) The piston moving in a cylinder does not develop any friction during motion.

(ii) The walls of piston and cylinder are considered as perfect insulators of heat.

(iii) The cylinder head is so arranged that it can be a perfect heat conductor or perfect heat
insulator.

{iv) The transfer of heat does not affect the temperature of source or sink.

{v) Working medium is a perfect gas and has constant specific heat.

(vi) Compression and expansion are reversible.

Following are the four stages of Carnot cycle :

Stage 1. (Process 1-2). Hot energy source is applied. Heat @, is taken in whilst the fluid
expands isothermally and reversibly at constant high temperature T,.

Stage 2. (Process 2-3). The cylinder becomes a perfect insulator so that nc heat flow
takes place. The fluid expands adiabatically and reversibly whilst temperature falls from T, to
T,.
Stage 3. (Process 3-4). Cold energy source is applied. Heat @, flows from the fluid whilst
it is compressed isothermally and reversibly at constant lower temperature T,.

Stage 4. (Process 4-1). Cylinder head becomes a perfect insulator so that no heat flow
occurs. The compression is continued adiabatically and reversibly during which temperature is
raised from T, to T,.

The work delivered from the system during the cycle is represented by the enclosed area
of the cycle. Again for a closed cycle, according to first law of the thermodynamics the work
obtained is equal to the difference between the heat supplied by the source (&) and the heat
rejected to the sink (Q,).
: W=@ -9

Work done Q-
Heat supplied by the source )

Also, thermal efficiency, ng =
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. Q]_:mc T1

Q@ Ty r
=1-X4:-1-22 = T
Ql[ T] QZ mcp 2

where, m = mass of fluid.

Such an engine since it consists entirely of reversible processes, can operate in the reverse
direction so that it follows the cycle shown in Fig. 5.5 () and operates as a heat pump. @, is being
taken in at the lower temperature 7, during the isothermal expansion (process 4-3) and heat Q, is
being rejected at the upper temperature T, (process 2-1). Work W will be needed to drive the pump.
Again, the enclosed area represents this work which is exactly equal to that flowing from it when
used as engine,

The Carnot cycle cannot be performed in practice because of the following reasons :

1. It is imposible to perform a frictionless process.

2. It is impossible to transfer the heat without temperature potential.

3. Isothermal process can be achieved only if the piston moves very slowly to allow heat
transfer so that the temperature remains contant. Adiabatic process can be achieved only if the
piston moves as fast as possible so that the heat transfer is rogligible due to very short time
available. The isothermal and adiabatic processes take place during the same stroke therefore the
piston has to move very slowly for part of the stroke and it has to move very fast during remaining
stroke. This variation of motion of the piston during the same stroke is not possible.

5.9. CARNOT’S THEOREM

“It states that of all engines operating between a given constant temperature
source and a given constant temperature sink, none has a higher efficiency than a
reversible engine”.

Refer Fig. 5.6.

Source, T,
70 YQs
HE, HEg
WA WB
YQ,, ¥ Qo
Sink, T,

Fig. 5.6. Two cyclic heat engines HE, and HE,
operating between the same source and sink, of which HE ; is reversible.

HE, and HEy are the two engines operating between the given source at temperature T
and the given sink at temperature T,.
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Let HE, be any heat engine and HEj be any reversible heat engine. We have to prove that
efficiency of HE is more than that of HE,. Let us assume that 1, > ng. Let the rates of working of
the engines be such that

Q= Qp=¢,

Since N> Mg

Wa VWp
Qs Qus

: W,> Wy

Now let HE; be reversed. Since HE is a reversible heat engine, the magnitudes of heat and
work transfer quantltles will remain the same, but their directions will be reversed, as shown in
Fig. 5.7. Since W, > Wj, some part of W, (equal to W) may be fed to drive the reversed heat engine
JH,. Since @, = Q = @,, the heat dmcharged by 3H, may be supplied to HE,. The source may,
therefore be ehmmated (F1g 5.8). The net result is that HE, and 3H, together constitute a heat
engine which, operating in a cycle produces net work W, — W while exchangmg heat with a single
reservoir at T,. This violates the Kelvin-Planck statement of the second law. Hence the assump-
tion that n, > ng is wrong.

Source, T,

Y Qs +Q

w
HE, W»—% IH,

A

Y Qza 4Qxp

Sink, T,

Fig. 5.7. HE , is reversed.

YQ,,=Q, 4Qp=0
HE, Wa e IH,
l
Q.Y W,—Wp 4Qxp
Sink, T,

Fig. 5.8. HE, and 3H, together violate the Kelvin-Planck statement.

Ng 2 M-
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5.10. COROLLARY OF CARNOT'S THEOREM

“The efficiency of all reversible heat engines operating beiween the same
temperature levels is the same”.

Refer Fig. 5.6. Let both the heat engines HE, and HEy, be reversible. Let us assume
N, >Ng. Similar to the procedure outlined in the Article 5.9, if HE, is reversed to run say, as
a heat pump using some part of the work output (W,) of engine HE,, we see that the combined
system of heat pump HE; and engine HE,, becomes a PMM2. So n, cannot be greater than
Ng- Similary, if we assume np > n, and reverse the engine HE,, we observe that ng cannot be
greater than n,

’ N4 = Np-

Since the efficiencies of all reversible engines operating between the same heat reservoirs

are the same, the efficiency of a reversible engine is independent of the nature or amount of
the working substance undergoing the cycle.

5.11. EFFICIENCY OF THE REVERSIBLE HEAT ENGINE
The efficiency of a reversible heat engine in which heat is received solely at T, is found to be

€ ] T
n =1 =1- (— =1- 22
reu, TR Ql o, Tl
-1

or T.?'EIJ. = Tl

From the above expression, it may be noted that as T, decreases and T increases, the
efficiency of the reversible cycle increases.

Since 1 is always less than unity, T, is always greater than zero and + ve.

The C.O.P. of a refrigerator is given by

Q@ 1
(C.OP.), = =
U -Q @_
Q
For a reversible refrigerator, using
& _n
Q T
1
(COP),, = T
T,
(COP) ], = —22 .{5.14)
ref. rev. Tl _ T2
Similarly, for a reversible heat pump
T;
[(C'O'P‘)hmt Pump]reu. = Tl __1T2 ---(5»15)

Example 5.1. A heat engine receives heat at the rate of 1500 kJ/min and gives an output of
8.2 kW. Determine :

(i) The thermal efficiency ; (ii) The rate of heat rejection.
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Solution. Heat received by the heat engine,
@, = 1500 kd/min

= 1500 = 25 kd/s
60
Work output, W = 8.2 kW = 8.2 kJ/s.
w
(&) Thermal efficiency, 1, = o

=82 0.328 = 32.8%
25

Hence, thermal efficiency = 32.8%. (Ans.)
(z1) Rate of heat rejection,
Q2= Ql" W=25-82
= 16.8 kl/s

Hence, the rate of heat rejection = 16.8 kJ/s.

(Ans.)

ENGINEERING THERMODYNAMICS

Source

¥ Q, = 1500 kJd/min

—» W =8.2 kW

YQ,

HE = Heat engine

Sink

Fig. 5.9

ssExample 5.2. During a process a system receives 30 kJ of heat from a reservoir and
does 60 kJ of work. Is it possible to reach initial state by an adiabatic process ¢

Solution. Heat received by the system = 30 kJ
Work done = 60 kJ

plk

Fig.5.10

Process 1-2 : By first law of thermodynamies,
Qo=W~Up+ W,
30=U,-U) +60
Process 2-1 : By first law of thermodynamics,
Qpy =W, -Up+ Wy,
0=30+ W,

2-1

U, ~ U =-30kd.

=— 30 kJ.

Thus 30 kJ work has to be done on the system to restore it to original state, by adiabatic

process.
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Example 5.3. Find the co-efficient of performance and heat transfer rate in the condenser
of a refrigerator in kJ/h which has a refrigeration capacity of 12000
kJIh when power input is 0.75 kW,

Solution. Refer Fig. 5.11. Condenser
Refrigeration capacity, @, = 12000 kJ/h Ty
Power input, W = 0.75 kW (= 0.75 x 60 x 60 kJ/h)

Co-efficient of performance, C.0.P. : A0,

Heat transfer rate :

Heat absorbed at lower temperature

(C.OP),peraior = Fork tnput pe I e—w
Q _ 12000

COP. = W 075 x60x60 = 4.44 4Q,

Hence C.Q.P. = 4.44. (Ans.) ' Evaporator

Hence transfer rate in condenser = @, (To)

According to the first law

Q, = @, + W = 12000 + 0.75 x 60 x 60 = 14700 kJ/h Fig. 5.1

Hence, heat transfer rate = 14700 kJ/h. (Ans.)

Example 65.4. A domestic food refrigerator maintains a temperature of — 12°C. The ambi-
ent air temperature is 35°C. If heat leaks into the freezer at the continucus rate of 2 k./s deter-
mine the least power necessary to pump this heat out continucusly.

Solution. Freezer temperature,
T,=-12+273=261K ;1:‘308{(
Ambient air temperature, mbient air

T, =35+273=308 K

Rate of heat leakage into the freezer = 2 kd/s 4Q,

Least power required to pump the heat :

The refrigerator cycle removes heat from the freezer at the IH e—w
same rate at which heat leaks into it (Fig. 5.12).

For minimum power requirement

4Q
%_9 2
T, T
2 . T,=261K
- = — = Freezer
Q,= T, xT = 261 x 308 = 2.36 kd/s 4
W=g,-Q, Q,=2klis
=236 - 2 = 0.36 kd/s = 0.36 kW Fig.5.12

Hence, least power required to pump the heat continuously
- 0-36 kw- (Ans.)

Example 5.5. A house requires 2 x 10° kJ/h for heating in winter. Heat pump is used to
absorb heat from cold air outside in winter and send heat to the house. Work required to operate
the heat pump is 3 x 10 kJ/h. Determine :

(i) Heat abstracted from outside ;
(it} Co-efficient of performance.
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Solution. (i) Heat requirement of the house, @, (or heat rejected)

=2 x 10% kdJ/h
Work required to operate the heat pump,
W =3 x 10¢ kJ/h
Now, Q,=W+@Q,

where @, is the heat abstracted from outside.
2x105=3x 10+ @,
Thus Q, = 2 x 10° - 3 x 10
= 200000 - 30000 = 170000 kJ/h
Hence, heat abstracted from outside = 170000 kJ/h. (Ans.)
3 __ &
(ii) (COP)MM pump - Ql _ Qz
_ 2x10° _
T 2x10°-170000
Hence, co-efficient of performance = 6.66. (Ans.)

Note. If the heat requirements of the house were the same but this amount of heat had to be abstracted
from the house and rejected out, i.e., cooling of the house in summer, we have

6.66

(COP).. =__% _&
refrigerator Q1 — QZ W
_ 170000
Tax1ot

Thus the same device has two values of C.0.P. depending upon the objective.

Example 5.8. What is the highest possible theoretical efficiency of a heat engine operating
with a hot resérvoir of furnace gases at 2100°C when the cooling water available is at 15°C ?

Solution. Temperature of furnace gases, T, = 2100 + 273 = 2373 K
Temperature of cooling water, T, = 15 + 273 = 288 K

T, 288
Now, M (= Mot = 1= T = 1= go70 = 0.878 or 87.8%. (Ans)

Note. It should be noted that a system in practice operating between similar temperatures (e.g., a steam
generating plant) would have a thermal efficiency of about 30%. The discrepency is due to irreversibility in
the actual plant, and also because of deviations from the ideal Carnot cycle made for various practical reasons.

Example 5.7. A Carnot cycle operates between source and sink temperatures of 250°C and
— 15°C. If the system receives 90 kJ from the source, find :

(i) Efficiency of the system ; (i) The net work transfer ;
(iit) Heat rejected to sink.

Solution. Temperature of source, T; = 250 + 273 = 523 K
Temperature of sink, T, = - 15 + 273 = 258 K

Heat received by the system, Q,=90kJ

@) Newrnot = 1 = 72 =1— 22~ = 0.506 = 50.6%. (Ans.)
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W
(ii) The net work transfer, W=1m_, . x @, [ “ Nearnot = Q—i|
1

= 0.506 x 90 = 45.54 kJ. (Ans.)
(iii) Heat rejected to the sink, @, =@, - W [ W=, -@)
=90 - 45.54 = 44.46 kJ. (Ans.)
Example 5.8. An inventor claims that his engine has the following specifications ;

Temperature limits wveere 780°C and 25°C
Power developed ... 75 kW

Fuel burned per hour .. 3.9 kg

Heating value of the fuel ... 74500 kJ kg

State whether his claim is valid or not.
Solution. Temperature of source, T, = 750 + 273 = 1023 K
Temperature of sink, T, = 25 + 273 = 298 K

We know that the thermal efficiency of Carnot cycle is the maximum between the specified
temperature limits.
% =1~ -1-2{% = 07086 or T0.86%
The actual thermal efficiency claimed,
__ Workdone _ 75 x 1000 x 60 x 60
Nehermal = Peat supplied 3.9 x 74500 x 1000

SiNce Myermat > MNearmor therefore claim of the inventor is not valid (or possible). (Ans.)

Now, Npwrnot = 1 —

= 09292 or 92.92%.

Example 5.9. A cyclic heat engine operates between a source temperature of 1 000°C and a
sink temperature of 40°C. Find the least rate of heat rejection per kW net output of the engine 2

Solution. Temperature of source,

T, =1000 + 273 = 1273 K T C1273K
Temperature of sink, 1 =1273
Source
T,=40+273 =313 K
Least rate of heat rejection per kW net out-
put : YQ,
For a reversible heat engine, the rate of heat 1 KW
rejection will be minimum (Fig. 5.1;’:) - e L W=0Q,-Q,=
2
Mingx = Ty, = 1- Fl
sz
—1- 28 o754
1273
Now =22 =n__=0754 T,=313K
e max
Q= Woee __1_ _ ) 306 kW Fig.5.13
0754 0.754
Now Q,=0,-W,,=1326-1=0326 kW

Hence, the least rate of heat rejection = 0.326 kW. (Ans.)
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Example 5.10. A fish freezing plant requires 40 tons of refrigeration. The freezing tem-
perature is — 35°C while the ambient temperature is 30°C. If the performance of the plant is 20%
of the theoretical reversed Carnot cycle working within the same temperature limits, calculate
the power required.

Given : 1 ton of refrigeration = 210 kJ/min.

Solution. Cooling required = 40 tons = 40 x 210

= 8400 kJ/min
30 +273=303 K
-35+273=238K
20% of the theoretical reversed Carnot cycle
_ T, 238
refrigerator = _ T, 303 - 238
. Actual C.Q.P = 0.20 x 3.66 = 0,732
Now work needed to produce cooling of 40 tons is calculated as follows :

_ Cooling reqd.

1

. Ambient temperature, T
Freezing temperature, T,
Performance of plant

(C.O.P.) = 3.66

(COPoctuat = Work needed
0.732 8400 W M kJ/mi 191.25 kJ/s = 191.25 kW
182= 5 or = G7ag Kd/min = 191 3 = 191,

Hence, power required = 191.25 kW. (Ans.)

Example 8.11. Source 1 can supply energy at the rate of 12000 kJ/min at 320°C. A second
source 2 can supply energy at the rate of 120000 kJ/min at 70°C. Which source (1 or 2) would you
choose to supply energy to an ideal reversible heat engine that is to produce large amount of
power if the temperature of the surroundings is 35°C ¢?

Solution. Source 1 :

Rate of supply of energy = 12000 kJ/min

Temperature, T,=320+273 =593 K

Source 2 :

Rate of supply of energy = 120000 kJ/min
Temperature, T,=70+273=343K

Temperature of the surroundings, T, = 35°C + 273 = 308 K
Let the Carnot engine be working in the two tases with the two source temperatures and
the single sink temperature-The efficiency of the cycle will be given by :

Ty 308
=1- 22 =1- 292 _ 04806 or 48.06%
M Ty 593

My=1- ;:—j =1- % =0.102 or 10.2%
The work delivered in the two cases is given by
W, = 12000 x 0.4806 = 5767.2 kJ/min
and W, = 120000 x 0.102 = 12240 kJ/min.
Thus, choose source 2. (Ans.)

Note. The source 2 is selected even though efficiency in this case is lower, because the criterion for
selection is the larger output.
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srExample 5.12. A reversible heat engine operates between two reservoirs at temperg-

tures 700°C and 50°C. The engine drives a reversible refrigerator which operates between reser-
voirs at temperatures of 50°C and - 25°C. The heat transfer to the engine is 2500 kJ and the net
work output of the combined engine refrigerator plant is 400 kJ.

(i} Determine the heat transfer to the refrigerant and the net heat transfer to the reservoir
at 50°C ;

(i) Reconsider (i) given that the efficiency of the heat engine and the C.O.P. of the refrig-
erator are each 45 per cent of their maximum possible values.

Solution. Refer Fig. 5.14.

T,=9873K T,=248K
¥ Q, = 2500 kd yQ,
W, W,
HE > l > 3H
vQ, W = 400 kJ vQ,=Q;+ W,
T,=323K
Fig.5.14
Temperature, T, =700+273=973 K
Temperature, T,=50+273=323K
Temperature, T,=-25+273=248K

The heat transfer to the heat engine, @, = 2500 kJ

The network output of the combined engine refrigerator plant,
W=W, - W, =400 kJ.

(i) Maximum efficiency of the heat engine cycle is given by

T, 323
=1-22 =1- 22 _ 0668
Mma =1 = 973 =
Again, Wi - oess
@
W, = 0.668 x 2500 = 1670 kJ
T, 248
OP) = - = 3.306
COP)ec= 4 1, = 323-248 = >0
Also, COP.= & _ 3306

W,
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Since, W, - W,=W=400kJ

W, = W, - W = 1670 — 400 = 1270 kJ

@, = 3.306 x 1270 = 4198.6 kJ

Q= Q,+ W, = 4198.6 + 1270 = 5468.6 kJ

&, = @, — W, = 2500 - 1670 = 830 kJ.
Heat rejection to the 50°C reservoir

= @, + @, = 830 + 5468.6 = 6298.6 kJ. (Ans.)
(ii) Efficiency of actual heat engine cycle,
n=045n,,, =045 x 0.668 = 0.3

W, =nx g, =0.3 x 2500 = 750 kJ
- W, = 750 — 400 = 350 kJ
C.O.P. of the actual refrigerator cycle,

COP = & = 0.45 x 3.306 = 1.48
W,

Q, =350 x 1.48 = 518 kJ. (Ans.)
Q; = 518 + 350 = 868 kJ
Q, = 2500 — 750 = 1750 kJ
Heat rejected to 50°C reservoir
=@, + @; = 1750 + 868 = 2618 kd. (Ans.)

swExample 5.13. (i) A reversible heat pump is used to maintain a temperature of 0°C in a
refrigerator when it rejects the heat to the surroundings at 25°C. If the heat removal rate from
the refrigerator is 1440 kd/min, determine the C.O.P. of the machine and work input required.

(i) If the required input to run the pump is developed by a reversible engine which receives
heat at 380°C and rejects heal to atmosphere, then determine the overall C.O.P. of the system.
Solution. Refer Fig. 5.15 (a).

(i) Temperature, T, = 25 + 273 = 298 K
Temperature, T, = 0 + 273 = 273 K

Source Source Source
25°C 380°C 0°C
4Q, YQ, YQ,
Heat Heat N Heat
w *  pump engine W pump
4Q, YQ, TQ,
Sink . Sink (Atmosphere)
0°C 25°C
(a) Single system (b) Combined system

Fig.5.15
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Heat removal rate from the refrigerator,
Q, = 1440 kJ/min = 24 kJ/s

Now, co-efficient of performance, for reversible heat pump,
T 298

C.OP. = = = 11.92. (Ans.
T,-T,  (298-273) 11.52. (Ans,)
1 273
COP) , = —2 = = 10.92
( et T,-T, 298-273
Now, 1092 S _24
W W
W =22 kW

i.e., Work input required = 2.2 kW, (Ans.)
Q,=Q,+ W=24+22=262kl/s
(i) Refer Fig. 5.15 (b).
The overall C.Q.P. is given by,
Heat removed from the refrigerator

C.OP. =
Heat supplied from the source
9 .
@ (i)
For the reversible engine, we can write
Q_%
T, T,
Q+W @
* T, T
or Q+22 - Q4
(380 +273) (25+273)
or Q+22_GQ,
653 298
or 298(@, + 2.2) = 653 Q,
or €,(653 — 298) = 298 x 2.2
298x 2.2
= —— = 1.847 kJ/;
o Q= e53-298) e

- Qy=Q,+ W=1847 + 22 = 4,047 kd/s
Substituting this value in eqn. (i), we get

CoP. - 2% _ 593 (Ans)
4.047
If the purpose of the system is to supply the heat to the sink at 25°C, then

Qs +Qy 26.2 + 1.847
Overall C.O.P, = & <017 = 6.93. (Ans.)
Example 5.14. An ice plant working on a reversed Carnot cycle heat pump produces
15 tonnes of ice per day. The ice is formed from water at 0°C and the formed ice is maintained at
0°C. The heat is rejected to the atmosphere at 25°C, The heat pump used to run the ice plant is
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coupled to ¢ Carnot engine which absorbs heat from a source which is maintained at 220°C by
burning liquid fuel of 44500 kJ/kg calorific value and rejects the heat to the atmosphere. Determine :

(i) Power developed by the engine ;

(i1) Fuel consumed per hour.

Take enthalpy of fusion of ice = 334.5 kJikg.

Solution. (i) Fig. 5.16 shows the arrangement of the system.
Amount of ice produced per day = 15 tonnes.

(220 + 273) (25 + 273)
=493 K =288 K
YQ,, 4Q,,
Heat N Heat
engine W pump
YQ,; 4Q,
(25 + 273) (0 +273)
=298 K =273 K
Fig.5.16
The amount of heat removed by the heat pump,
Q, = 15 x 1000 x 334.5 .
Po 24 % 60 = 3484.4 kJ/min
C.0.P. of the heat pump = Q—pz 218
W 298-273
298 - 273 25
W= X = 34844 x — = 319.08 kJ/mi
@53 273 mm
This work must be developed by the Carnot engine,
319.08

W=

80 = 53 kd/s = 5.3 kW

Thus power developed by the engine = 5.3 kW. (Ans.)
(ii) The efficiency of Carnot engine is given by

W 298
= 1o 22 0396
“mmot Qel 493
W 53
= __ 98 _ 1338 kJ/
. = 5396 ~ 0.396 s

Qe ey = 13.38 x 60 x 60 = 48168 kJ
Quantity of fuel consumed/hour
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Example 5.15. Two Carnot engines work in series between the source and sink tempera-
tures of 550 K and 350 K. If both engines develop equal power determine the intermediate tem-
perature.

Solution. Fig. 5.17 shows the arrangement of the system. Source
Temperature of the source, T = 550 K 550K
Temperature of the sink, T,=30K T T,
Intermediate temperature, T, : YQ,
The efficiencies of the engines HE, and HE, are given by
n W Tl - Tz w (_) HE‘I —W
= — = = FUR Y
1T e T +w 7 T
2
w Ty -Ty w .. YQ,
T‘2 = a—" = T = Q +W ...(H)
2 2 3
From eqn. (i), we get HE, —»W
_ Lh-y T T
v e (A7) ra
(el [E
1 Ty 350 K
T. T, -T.
wil|_ g0ty -
B)-o[52)
W = QQ(TI‘E’ i)
T
From eqn. (ii), we get
W=Q, (7}3 __Té) i)
T

Now from eqns. {iii) and (iv), we get
T -T,=T,-T,
2T, =T, + Ty = 550 + 350

- T, = 450 K

Hence intermediate temperature = 450 K. (Ans.)

Example 5.18. A Carnot heat engine draws heat from a reservoir at temperature T, and
rejects heat to another reservoir at temperature Ty The Carnot forward cycle engine drives a
Carnot reversed cycle engine or Carnot refrigerator which absorbs heat from reservoir at tem-
perature T, and rejects heat to a reservoir at temperature T, If the high temperature T,=600K
and low temperature T, = 300 K, determine :

{©) The temperature T, such that heat supplied to engine @ ; is equal to the heat absorbed
by refrigerator @,.

(it) The efficiency of Carnot engine and C.O.P. of Carnot refrigerator.

Solution. Refer Fig. 5.18.

Temperature, T, = 600 K

Temperature, T, = 300 K
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T2 T1
{300 K) (600 K)
¥ Q, vQ,
Carnot P Carnot
refrig. - engine

9 Wearnot = @~ Q' g

Q,” Q,
TS
Fig.5.18

Efficiency of Carnot engine,
Q-6 T1-T;

Nearnot engine = Q}. - Tl
_ Work of Carnot engine _ Woarnot
Heat supplied to the Carnot engine (43
T, -T. .
or Wearnot =@ ( ITI 3] N3]
Q T,
Also C.OP. ot refrigerator) = Q-9 = -,
_ Heatabsorbed @,
Wcamat vvcamot
Ty -T. ..
or W= @ [ 3T2 2J i)

(i) Temperature, T :
From eqgns. (i) and (ii), we get

&=£(Tr%)
Q TNLh\Tz-T,
Q, 300 (600 - Ty
or = z=l= |5
Q, 600 | T; - 300
or 600 — T, = 2(T; — 300)

600 — Ty =2T, - 600 or T,=400K
Hence, temperature, T, = 400 K. (Ans.)
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(ii) Efficiency of Carnot engine,

_T,-Ty,  600-400 _
Moot ngine = 7 = ~ggo = 03333 = 33.33%. (Ans.)

T, 300
COPpigerator = T _T, = 200-300 =
Example 5.17. A heat pump working on a reversed carnot cycle takes in energy from a
reservoir maintained at 5°C and delivers it to another reservoir where temperature is 77°C. The
heat pump derives power for its operation from a reversible engine operating within the higher
and lower temperatures of 1077°C and 77°C. For 100 kJ /kg of energy supplied to reservoir at
77°C, estimate the energy taken from the reservoir at 1077°C. U.PS.C, 1994)
Solution. Given : T;=5+273=278K; T,=T,=77 +273 =350 K ;
T,=273 + 1077 = 1350 K ;
Energy taken from the revervoir at 1077°C, Q, :

3. (Ans.)

Tz = T4
350 K
Q, 4 &
Pump < Engine < T, =1350K
Q, |
A Q3
T,=278K
Fig.5.19
- T, -T. .
For reversible engine, 1 = Q- @y = -1 %3 )
@ I
Q@ T,
- = 1-%
or 1 2, 7
o_n
@ T
For reversible heat pump, C.O.P. = @ ___ T L)
Qi-Q3 T,-Ty

Since work for running the pump is being supplied by the engine
¥ Q1 - Q2 = Q4 - Qa

o ;‘;_1@1 _Ty)= %(n _Ty) [From (i) and (ii)]
1 4
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& Il_[ﬂ T]

Q4 - T4 T] —T2
_1350(350-278)
350 | 1350-350) =
or Q= % =36 Q,
T, 350
and 2= <@ = 55 @ =029 Q,
Q,+ Q, = (36 +0.259) @, = 100
100
Q= 35 0250 = 259 kJ. (Ans)

CLAUSIUS INEQUALITY

sTExample 5.18. 300 kJ/s of heat is supplied at a constant fixed temperature of 290°C to a

heat engine. The heat rejection takes place at 8.5°C. The following results were obtained :
(i) 215 kJ/s are rejected.

(if) 150 kJ/s are rejected.

(i) 75 kJ/s are rejected.

Classify which of the result report a reversible cycle or irreversible cyele or impossible
results.

Solution. Heat supplied at 290°C = 300 kJ/s

Heat rejected at 8.5°C : (i) 215 kJ/s, (if) 150 kJ/s, (Zii) 75 kd/s.

Applying Clausius inequality to the cycle or process, we have :

@ 2@ 300 215
o T 2904273 85+273

= (0.5328 - 0.7637 = — 0.2309 < 0.
Cycle is irreversible. (Ans.)

. 8Q 300 150
(i) 2 T ~ 200+ 273 85+ 273

=0.5328 - 0.5328=0
Cycle is reversible. (Ans.)

cycle

3 300 75
(&2t c;cl‘é T T 290+273  85+273
= 0.5328 — 0.2664 = 0.2664 > 0.
This cycle is impossible by second law of thermodynamics, i.e., Clausius inequality. (Ans.)
Example 5.19. A steam power plant operates between boiler temperature of 160°C and

condenser temperature of 50°C. Water enters the boiler as saturated liquid and steam leaves the
boiler as saturated vapour. Verify the Clausius inequality for the cycle.

Given : Enthalpy of water entering boiler = 687 kJ/kg.
Enthalpy of steam leaving boiler = 2760 kJ/kg
Condenser pressure = 0.124 x 10° Nim?.
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Solution. Boiler temperature, T, =160 + 273 = 433 K
Condenser temperature, T, = 50 + 273 = 323 K

From steam tables :

Enthalpy of water entering boiler, % = 687 kJ/kg _

Enthalpy of steam leaving boiler, hy = 2760 kJ/kg

Condenser pressure = 0.124 x 105 N/m?

Boiler pressure = 6.18 x 10° N/m? ... (corresponding to 160°C)
Enthalpy of vapour leaving the turbine, hy = 2160 kJ/kg
(assuming isentropic expansion)

Enthalpy of water leaving the condenser, hyy = 209 kd/kg

Now Quoiters @1 = hy = hyy = 2760 - 687 = 2073 kd/kg
and Quondenserr Qg = hpy — hg = 209 — 2160 = - 1951 ki/kg
z§g=i+gg_=2073+(-1951]
T T, T, 433 \ 323
eycle
=- 125 kl/kg K
<0 ... Proved.

s> Example 5.20. In o power plant cycle, the temperature range is 164°C to 51°C, the upper

temperature being maintained in the boiler where heat is received and the lower temperature
being maintained in the condenser where heat is rejected. All other processes in the steady flow
cycle are adiabatic. The specific enthalpies at various points are given in Fig. 5.20.

Verify the Clausius Inequality.

4 h, = 690 kJ/kg Q i

©

@ h, = 450 kJ/kg:

Y : s

'

Pump !
Fig.5.20

Solution. Temperature maintained in boiler, T =164 + 2713 = 437K
Temperature maintained in condenser, T,=51+273=324K
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Heat transferred in the boiler per kg of fluid,
@, = hy — hy = 2760 — 690 = 2070 kJ/kg
Heat transferred out at the condenser per kg of fluid,
Q, = h, — hy = 450 — 2360 = — 1910 kJ’kg
Since there is no transfer of heat at any other point, we have per kg
Zq@: @ Qz 2070 +(— 1910]
o T Nn T2 437 324
= 4,737 — 5.895
= - 1.168 kd/kg K < 0.
The Clausius Inequality is proved. The steady flow cycle is obviously irreversible.
If the cycle is reversible between the same temperature limits and the heat supplied at
higher temperature is same, the heat rejected can be calculated as follows :

T 324
Nyeversive = 1 — T, =1- 7 = 0.2586 or 25.86%

Heat rejected per kg is given by
Q, = (1 - 0.2586) x @, = (1 — 0.2586) x 2070 = 1534.7 kd/kg

25Q_2070_15347 473478 = 0

o 324
Le., 2 3Q _ Qodied _ Qre-’emd =0
cycle T;:ource T:zmk

Thus Clausius Equality sign for a reversible engine is verified.

5.12. ENTROPY

5.12.1. Introduction

In heat engine theory, the term entropy plays a vital role and leads to important results
which by other methods can be obtained much more laboriously.

It may be noted that all heat is not equally valuable for converting into work. Heat that is
supplied to a substance at high temperature has a greater possibility of conversion into work than
heat supplied to a substance at a lower temperature.

“Entropy is a function of a quantity of heat which shows the possibility of conversion of
that heat into work. The increase in entropy is small when heat is added at o high temperature
and is greater when heat addition is made at a lower temperature. Thus for maximum entropy,
there is minimum availability for conversion into work and for minimum entropy there is maxi-
mum availability for conversion into work.”

5.12.2. Entropy—a Property of a System

Refer Fig. 5.21. Let us consider a system undergoing a reversible process from state 1 to
state 2 along path L and then from state 2 to the original state 1 along path M. Applying the
Clausius theorem to this reversible cyclic process, we have

3Q
X _p
rR T
(where the subscript designates a reversible cycle)
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Hence when the system passes through the cycle 1-L-2-M-1, we have

2 5Q 1 5Q
—+ =2 _9
o) T oMy T ...(5.16)

Now consider another reversible cycle in which the system changes from state 1 to state 2
along path L, but returns from state 2 to the original state 1 along a different path N. For this
reversible cyclic process, we have

J-2 8Q+1 SQ 0

l(L)_'IT any) T (51T

pa

r.
>

v

Fig. 5.21. Reversible cyclic process between two fixed end states.

Subtracting equation (5.17) from equation (5.16), we have
Jl Q 1
amy T Jamy T
2 5Q 2N §Q
or L T Jll T
As no restriction is imposed on paths L and M, except that they must be reversible, the

quantity -5—,1,? is a function of the initial and final states of the system and is independent of the
path of the process. Hence it represents a property of the system. This property is known as the
“entropy”.

5.12.3. Change of Entropy in a Reversible Process

Refer Fig. 5.21.

Let §, = Entropy at the initial state 1, and

S, = Entropy at the final state 2.
Then, the change in entropy of a system, as it undergoes a change from state 1 to 2, becomes
2(5Q
S~ 8= | (FL .A5.18)

Lastly, if the two equilibrium states 1 and 2 are infinitesimal near to each other, the inte-
gral sign may be omitted and S, — S, becomes equal to dS.
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Hence equation (5.18) may be written as

b
ds = [?Q) .(5.19)
R
where dS is an exact differential.

Thus, from equation (5.19), we find that the change of entropy in a reversible process is

equal to % . This is the mathematical formulation of the second law of thermodynamics.

Equation (5.19) indicates that when an inexact differential 8@ is divided by an integrating
factor T during a reversible process, it becomes an exact differential.

The third law of thermodynamics states “When a system is at zero absolute tempera-
ture, the entropy of system is zero”.

It is clear from the above law that the absolute value of entropy corresponding to a given

state of the system could be determined by integrating 8—;?— between the state at absolute zero

and the given state. Zero entropy, however, means the absence of all molecular, atomic, elec-
tronic and nuclear disorders.

As it is not practicable to get data at zero absolute temperature, the change in entropy is
calcutated either between two known states or by selecting some convenient point at which the
entropy is given an arbitrary value of zero. For steam, the reference point at which the entropy is
given an arbitrary value of zero is 0°C and for refrigerants like ammonia, Freon-12, carbon dioxide
etc. the reference point is — 40°C, at which the entropy it taken as zero.

Thus, in practice we can determine the change in entropy and not the absolute value of
entropy.

5.13. ENTROPY AND IRREVERSIBILITY

We know that change in entropy in a reversible process is equal to (%@] (eqn. 5.19). Let
R

us now find the change in entropy in an irreversible process.

pa

>V
Fig. 5.22. Entropy change for an irreversible process.

Consider a closed system undergoing a change from state 1 to state 2 by a reversible process
1-I-2 and returns from state 2 to the initial state 1 by an irreversible process 2-M-1 as shown in
Fig. 5.22 on the thermodynamic coordinates, pressure and volume.
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Since entropy is a thermodynamic property, we can write

2 1
§as = J'l ' @sy +j2(M)(dS)I =0 ...(5.20)

{Subscript I represents the irreversible process).
Now for a reversible process, from eqn. (5.19), we have

2 2 5Q
dS)p = —
L{L)( L J;(L)( T )R {5.21)
2
Substituting the value of L(L)(dS Jr in eqn. (5.20), we get
2 (8Q 1
L{L)(?)R * -L(M)(dS)I =0 ..(5.22)

Again, since in eqn. {5.20) the processes 1-L-2 and 2-M-1 together form an irreversible cycle,
applying Clausius equality to this expression, we get

8 r? g 1 @
T _L{L)[ T ]R * -L(M)( T )I <0 ..{5.23)

Now subtracting eqn. {5.23) from eqn. (5.22), we get

1 1 SQ
JE(MJ(dS)I g Iz(M)(?l

which for infinitesimal changes in states can be written as

ds); > j[%] . (5.24)
I

Eqn. (5.24) states that the change in entropy in an irreversible process is greater than % .

Combining eqns. (5.23) and (5.24), we can write the equation in the general form as

3Q
ds z {5.25)

where equality sign stands for the reversible process and inequality sign stands for the irrevers-
tble process.

It may be noted here that the effect of irreversibility is always to increase the entropy of the
system.

Let us now consider an isolated systern. We know that in an isolated system, matter, work
or heat cannot cross the boundary of the system. Hence according to first law of thermodynamics,
the internal energy of the system will remain constant.

Since for an isolated system, 6@ = 0, from eqn. (5.25), we get
(d8);ptntea 2 0 ...(5.26)

Eqn. (5.26) states that the entropy of an isolated system either increases or remains con-
stant. This is a corollary of the second law. It explains the principle of increase in entropy.

5.14, CHANGE IN ENTROPY OF THE UNIVERSE
We know that the entropy of an isolated system either increase or remains constant, i.e,
dS)isotatea 2 0
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By including any system and its surrounding within a single boundary, as shown in
Fig. 5.23, an isolated system can be formed. The combination of the system and the surroundings
within a single boundary is sometimes called the Universe. Hence, applying the principle of
increase in entropy, we get

(dS)
+ (dS)

=z 0

universe =

where (dS) . = (dS)

universe system surroundings”

System
temperature

Boundary of

5./ the universe

1

[}

]

i

Surrounding i
temperature !
i

i

Fig. 5.23. Entropy change of universe.

In the combined closed system consider that a quantity of heat 8@ is transferred from the
system at temperature T to the surroundings at temperature T,. Applying eqn. (5.24) to this
process, we can write

5Q
(ds)system > - ‘F

(—ve sign indicates that heat is transferred from the system).

Similarly, since an amount of heat 8@ is absorbed by the surroundings, for a reversible
process, we can write

(dS) '

surroundings = TO

Hence, the total change in entropy for the combined system

Q  Q
AS),iem + AS)indines 2= —— + ==
system nding: T TD
or (dS), piverse = 4G (— ;—,,+ —;;J

The same result can be obtained in the case of an open system.
For both closed and open systems, we can write
(dS), 20 .(5.27)

universe
Eqgn. (5.27) states that the process involving the interaction of a system and the surround-
ings takes place only if the net entropy of the combined system increases or in the limit remains

constant. Since all natural processes are irreversible, the entropy is increasing continually.
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The entropy attains its maximum value when the system reaches a stable equilibrium
state from a non-equilibrium state. This is the state of maximum disorder and is one of maximum
thermodynamic probability.

5.15. TEMPERATURE-ENTROPY DIAGRAM

If entropy is plotted-horizontally and absolute temperature vertically the diagram so obtained
is called temperature-entropy (T-s} diagram. Such a diagram is shown in Fig. 5.24. If working
fluid receives & small amount of heat d@ in an elementary portion ab of an operation AB when
temperature is T, and if d@) is represented by the shaded area of which 7 is the mean ordinate, the

width of the figure must be% . This is called ‘increment of entropy’ and is denoted by dS. The

total heat received by the operation will be given by the area under the curve AB and (S; - 8,) will
be corregponding increase of entropy.

4 T (Temp.)

w

» S (Entropy)

m ™

S —» pds

Fig. 5.24. Temperature-entropy diagram.

From above we conclude that :
Heat change (@)
Absolute temperature (T")
“Entropy may also be defined as the thermal property of a substance which remains
constant when substance is expanded or compressed adiabatically in a cylinder”.
Note. ‘s’ stands for specific entropy whereas ‘S’ means total entropy (i.e., S = ms).

Entropy change, dS-=

5.16. CHARACTERISTICS OF ENTROPY

The characteristics of entropy in a summarised form are given below :

1. It increases when heat is supplied irrespective of the fact whether temperature changes
or not.

2. It decrease when heat is removed whether temperature changes or not.
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3. It remains unchanged in all adiabatic frictionless processes.
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4. It increases if temperature of heat is lowered without work being done as in a throttling

process.

5.17. ENTROPY CHANGES FOR A CLOSED SYSTEM

§.17.1. General Case for Change of Entropy of a Gas

Let 1 kg of gas at a pressure p,, volume v,, absolute temperature T, and entropy s,, be
heated such that its final pressure, volume, absolute temperature and entropy are p,, v,, T; and s,

respectively. Then by law of conservation of energy,
d@ = du + dW
where, d@Q = Small change of heat,
du = Small internal energy, and
dW = Small change of work done (pdv).

Now dQ = ¢ dT + pdv
Dividing both sides by T, we get
4Q _odT  pdv
T T T
dQ
But *&T =ds
and as pv = RT
p_R
T v
Hence ds= 84T | R
T v

Integrating both sides, we get

T,
szdszf.:,,‘l‘:!—c£+R " dv
51 7 T wy U
or (85~ 5)=¢, log, & + R log, Yz
Tl Ul

This expression can be reproduced in the following way :
According to the gas equation, we have

Dty _ Pabs
T, T,
or Ty_pe x 22
nn p oy

T.
Substituting the value of 71;3 in eqn. (5.28), we get
1

v
8,— 8, = ¢, log, %fxi + R log,

P2 Uy

=¢ log, ~= +¢ log = +Rlo
v ge pl il gevl ge

Vg
Y U

2

[
1

..(5.28)
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=c, log, L (¢, + R) log, Y2
b vy
- P2 b2
= ¢, log, P + ¢, log, o
P2 vy
3,—8 =c,log =% +¢ log -2 ...(5.29
2 1=6 ge B b ge v ( )
Again, from gas equation,
Pty | Palp or 2_P, Ty
n T, n op Ty
Putting the value of 2—2 in eqn. (5.28), we get
L
I T
(s5-s)=c,log, -2 + Rlog, L x 2
2 ‘ h p2 Ty
- ) P 2
=c, log, T + R log, Ps + R log, T
=(c, +R)log 5 -~ R log Py
v * T ‘P
T, P2
=¢c log, =2 —Rlog 2
p 0 I . 21
s,— 8, =¢, log E-Rloge L2 {5.30)
2 1 P e Tl 5
5.17.2. Heating a Gas at Constant Volume
Refer Fig. 5.25. Let 1 kg of gas be heated at T4
constant volume and let the change in entropy and
absolute temperature be from s, to s, and T, o T,
regpectively.
Then Q=c/(T,~-T)
Differentiating to find small increment of heat
d@ corresponding to small rise in temperature d7T.
dQ = ¢ dT
Dividing both sides by T, we get
aQ dr
T “% T
dar
or ds=c,. T
Integrating both sides, we get
8y T dT
ds=c¢ I ——
L. S T >
or

s,—8;=¢, ]oge Z,:—f ..(5.31)

Fig. 5.25. T-s diagram ; Constant
volume process
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5.17.3. Heating a Gas at Constant Pressure

Refer Fig. 5.26. Let 1 kg of gae be heated at constant pressure, so that its absolute tempera-
ture changes from T, to T, and entropy s, to s,.

T4

:
Fig. 5.26. T-s diagrdin : Constant pressure process.
Then, Q=¢,T,-T).
Differentiating to find small increase in heat, d@ of this gas when the temperature rise is
dT.

d@=c,. dar
Dividing both sides by T, we get

dQ _ dr

T P T

or ds=c dr

-
Integrating both sides, we get

a3 L dT

ds= _{ el
L. K r, T
T.

8- 8,=¢, log, .’Fj

...{5.32)
5.17.4. Isothermal Process

An isothermal expansion 1-2 at constant temperature T is shown in Fig. 5.27.

Entropy changes from s, to s, when gas absorbs heat during expansion. The heat taken by
the gas is given by the area under the line 1-2 which also represents the work done during expan-
sion. In other words, @ = W.

4
But Q= j Tds = T(sy - 51)
&
and W=pv, log, %12- = RT, log, %3 per kg of gas [~ pw,=RT|
1
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T4

—
N

Ty=Ty}-mmmmm-

A

\

\

w
-
L]

wy

Fig. 5.27. T-s diagram : Isothermal process.

T(s, - 8y) = RT, log, %“’-
1

or $,— 5, = R log, 3—2 [ T,=T,=T
1
5.17.5. Adiabatic Process (Reversible)
During an adiabatic process as heat is neither supplied nor rejected,
d@ =0
dq
or 9T =
or ds=10
T4
) 71 S !
Y
Tg """"""""" H 2
51 = 52 ;

Fig. 5.28. T-s diagram : Adiabatic process.
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...(5.33)

(5.34)

This showe that there is no change in entropy and hence it is known as isentropic process.
Fig. 5.28 represents an adiabatic process. It is a vertical line (1-2) and therefore area under

this line ig nil ; hence heat supplied or rejected and entropy change is zero.
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5.17.6. Polytropic Process

Refer Fig. 5.29.

The expression for ‘entropy change’ in polytropic process (pv® = constant) can be obtained
from eqn. (5.28)
13

T,
ie., 8, -8, =¢, log, Ff + R log, o

T4

Fig. 5.29. T-s diagram : Polytropic process.

s, s

Also Dyt = pvyt
n
or B (U—ZJ A
P2 \1
. Pt Paly
ain, as == = ==
Again, T, T,
T,
or e = i)
pa u T
From (i) and (ii), we get
vl _w B
15 Uy T2
n—1
2 -3
or - = —
U T2
1
2_2_. -Ti n-1
or v \Ty

v
Substituting the value of ;‘f‘ in eqn. (5.28), we get
1

T, T, \a-1 T 1 T
Sg— 81 = ¢, log, T:"* R log, (?;]n =¢, log, F? +R [n_:I] log, T_;
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_ T, 1 T,
= ¢, log, 7, ~-R (n—l) log, T,

T. 1 T .
=culoge-1-§--(cp—cu)x[n_1] logea;? [* R=e,—¢]
= T, Ty ..
-culogeﬁ—(Y.cv—cv)x[n_lJ loge—T: [~ =Y. ¢,

P el T, Jm-1D-(y-1 T,
_cv[l [n—lﬂ log, T, —cy[—"'-——“—(n_l) ]loge T,

_ {n-1-y+1) Ty
_Cv[—n'—_—i—-—-J loge Tl

n-y T2
=c, . log =
e, (n-l] og, T, per kg of gas

- T
S,~ 8, =¢, (2—_1—(] log, Ff per kg of gas ...(5.35)
5.17.7. Approximation For Heat Absorbed

The curve LM shown in the Fig. 5.30 is obtained by heating 1 kg of gas from initial state L
to final state M. Let temperature during heating increases from T, to T,. Then heat absorbed by
the gas will be given by the area (shown shaded) under curve LM.

T4

LA 4

Fig. 5.30

As the curve on T-s diagram which represents the heating of the gas, usually has very
slight curvature, it can be assumed a straight line for a small temperature range. Then,

Heat absorbed = Area under the curve LM

= (5, - 5,) (ﬂ—;T'&’—J ..(5.36)
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In other words, heat absorbed approximately equals the product of change of entropy and
mean absolute temperature.

Table 5.1. Summary of Formulae

S. No. Process Change of entropy (per kg)
. T2 Uy .
1 General case () ¢, log, ™ +Rlog, P (in terms of T and v)
1 1
{ii) ¢, log, b2, e, log, %2 (in terms of p and v}
n U1
faa T2 P2 ..
(i) c,log, —= —Rlog, ~= (in terms of T and p)
T n
2, Constant. volume c, log, )
n
3. Constant pressure ¢ log, 4
n
4 Isothermal Rlog, 22
Y
5. Adiabatic Zero
6. Polytropic e, | 22 | log, L
n-1 41

6.18. ENTROPY CHANGES FOR AN OPEN SYSTEM

In an open system, as compared with closed system, there is additional change of entropy
due to the mass crossing the boundaries of the system. The net change of entropy of a system due
to mass transport is equal to the difference between the product of the mass and its specific
entropy af the inlet and at the outlet of the system. Therefore, the total change of entropy of the
system during a small interval is given by

aQ
ds 2 T, +Z.sl-.dmi-Esn.dm0

where, T, = Temperature of the surroundings,
8, = BSpecific entropy at the inlet,
s, = Specific entropy at the outlet,

dm; = Mass entering the system, and

dmgy= Mass leaving the system.
(Subscripts i and 0 refer to inlet and outlet conditions)
The above equation in general form can be written as

dq
ds > T ZS.dm ..(6.37)

In equation (5.37) entropy flow info the system is considered positive and entropy out-flow
is considered negative. The equality sign is applicable to reversible process in which the heat
interactions and mass transport to and from the system is accomplished reversibly. The inequality
sign is applicable to irreversible processes. o
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If equation (5.37) is divided by dt, then it becomes a rate equation and is written as

% 2 i @ + 2 .A5.38)

ds
In a steady-state, steady flow process, the rate of change of entropy of the system (m‘)
becomes zero.

1 dQ dm
Oz —— —
Ty di T & dt
or -E—Q +Is.m<0 ..(5.39)
To
where Q = a;—?
and m= d—m

t

For adiabatic steady flow process, @ =0

Y s.m <0 ..(5.40)
If the process is reversible adiabatic, then
Y s.m=0 .(5.41)

5.19. THE THIRD LAW OF THERMODYNAMICS

@ The third law of thermodynamics is stated as follow :
“The entropy of all perfect erystalline solids is zero at absolute zero temperature”.

e The third law of thermodynamics, often referred to as Nernst Law, provides the basis
for the calculation of absolute entropies of substances.

According to this law, if the entropy is zero at T' = 0, the absolute entropy s, of a substance
at any temperature T and pressure p is expressed by the expression.

T, =Th dT h f Tp=T; dT hfg I darT
Sab —J. Cps T j pf T T Tg pg T _ (542)
where T, = Tf1 = Tsf =T, veee. Tor fusion,
Trp=T,=Te=Typ for vaporisation

€psr Cpf» Cpg = Constant pressure specific heats for solids, liquids and gas,
b, hg = Latent heats of fusion and vaporisation.

Thus by putting s = 0 at T = 0, one may integrate zero kelvin and standard state of 278.15 K
and 1 atm., and find the entropy difference.

o Further, it can be shown that the entropy of a crystalline substance at 7= 0 is not a
function of pressure, viz.,

[E] -0
9P Jr-o
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However, at temperatures above absolute zero, the entropy is a function of pressure also.
The absolute entropy of a substance at 1 atm pressure can be calculated using eqn. (5.42) ; for
pressures different from 1 atm, necessary corrections have to be applied.

ENTROPY

Exmaplé 5.21. Arn iron cube at a temperature of 400°C is dropped into an insulated bath
containing 10 kg water at 25°C. The water finally reaches a temperature of 50°C at steady state.
Given that the specific heat of water is equal to 4186 J/kg K. Find the entropy changes for the

iron cube and the water. Is the process reversible ? If so why ? (GATE, 1996)
Solution. Given : Temperature of iron cube =400°C = 673 K
Temperature of water =25°C = 298 K
Mass of water =10 kg
Temperature of water and cube after equilibrium = 50°C = 323 K
Specific heat of water, € = 4186 J/kg K

Entropy changes for the iron cube and the water :
Is the process reversible ?
Now, Heat lost by iron cube = Heat gained by water
m; c,; (673 - 323) = m, c,,, (323 — 298)
= 10 x 4186 (323 - 298)

10 x 4186 (323 - 298)
m.c .= =

tm (623 -323)
where, m; = Mass of iron, kg, and
c,; = Specific heat of iron, J/kg K
. 673
Entropy ofironat 673 K=m.c In|—=
i LR (273)
673
=2990 In (2—73)
= 2697.8 J/K [Taking 0°C as datum]
208
Entropy of water at 208K =m, Cpyy I 273
298
=10 x 4186 In (2—73) = 3667.8 J/K

323
Entropy of iron at 323 K = 2990 x In (EJ =502.8 JJK

273
Changes in entropy of iron = 502.8 — 2697.8 = — 2195 J/K
Change in entropy of water = 7040.04 — 3667.8 = 3372.24 J/JK
Net change in entropy = 3372.24 — 2195 = 1177.24 J/K
Since AS > 0 hence the process is irrevesible, (Ans.)
Example 5.22. An ideal gas is heated from temperature T, to T, by keeping its volume
constant. The gas is expanded back to its initial temperature according to the law pv" = constant.

If the entropy change in the two processes are equal, find the value of n in terms of the adiabatic
index ¥, (U.P.S.C.,, 1997)

323
Entropy water at 323 K=10x41861n |- | = 7040.04 JK
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Solution. Change in entropy during constant volume process

=me, In (22—) e

Change in entropy during polytropic process (pv* = constant)

- ¥-n L .
=mec, (n-lj In (T]} i)

For the same entropy, equating (i) and (ii), we have

Y-n
no1 =1, or (y-n)=(-1) or 2n=v+1
n= 11 (ans.

Example 5.28. Air at 20°C and 1.05 bar occupies 0.025 m®. The air is heated at constant
volume until the pressure is 4.5 bar, and then cooled at constant pressure back to original tem-
perature. Calculate :

(i) The net heat flow from the air.

{ii) The net entropy change.

Sketch the process on T-s diagram.

Solution. The processes are shown on a T-s diagram in Fig. 5.31.

TK)4 3
0.025 m
4.5 bar
v = const.
2 .
ot 1.05 bar
p =
20+ 273 3
=203 K -
$3 81 S s(kikgK)
Fig.5.31
For air :
Temperature, T =20+273=203K
Volume, V,=V,=0.025 m3
Pressure, p, = 1.06 bar = 1.05 x 10° N/m?
Pressure, Py = 4.5 bar = 4.5 x 10° N/m?.

(i) Net heat flow :

For a perfect gas (corresponding to point 1 of air),
Vi 105 x10° x 0.025
RTy ~ 0287 x 10° x 293

m = = 0.0312 kg
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For a perfect gas at constant volume,

P_Py
Tl T2
105 45 45 % 293
it T i T = = 12 .7 K
293 T, 27105 55

At constant volume,
Q= me, (T, - T)) = 0.0312 x 0.718 (1255.7 — 293)

ie., @, o = 21.56 k.
Also, at constant pressure,
Q@=mx ¢, x (T3 — T,) = 0.0312 x 1.005 {293 — 1255.7)
ie., @, ,=-30.18 kJ

Net heat flow =@ o+ @y q=2156+(-30.18) = — 862 kJ
i.e., Heat rejected = 8.62 kJ. (Ans.)
(ii) Net entropy change :
Referring to Fig. 5.31.
Net decrease in entropy,
S, -8,=(8,-8y-(58,-8))
At constant pressure, d@ = me, dT, hence

12557 me.,.dT
(3= s9)= | 2
8T % 293 T
1255.7
= {. . —_—
0312 x 1.005 x log, 293
ie., S, - 84 = 0.0456 kJ/K
At constant volume, d@ = mc, dT, hence
1255.7
m(sz _ Sl) = I vadT
293 T
12557

= 0.0312 x 0.718 x log,

ie., 8, - 8, = 0.0326 kJ/K
: m(s; —s3)=8;-8;=(8,-8;)-(§8,-8)
= 0.0456 — 0.0326 = 0.013 kJ/K
Hence, decrease in entropy = 0.013 kJ/K. (Ans.)

Note that since entropy is a property, the decrease in entropy is given by 8, ~ §,, is inde-
pendent of the process undergone befween states 1 and 3.

= 0.0326 kJ/K

Example 5.24. 0.04 m? of nitrogen contained in a cylinder behind a piston is initially at
1.05 bar and 15°C. The gas ts compressed isothermally and reversibly until the pressure is
4.8 bar. Calculate :

(i} The change of entropy,
{(it) The heat flow, and
(iii) The work done.
Sketch the process on a p-v and T-s diagram.
Assume nitrogen to act as a perfect gas. Molecular weight of nitrogen = 28.
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Solution. Refer Fig. 5.32.

Initial pressure, Py = 1.05 bar = 1.05 x 10° N/m?
Initial volume, V, =004 m?

Temperature, T,=15+273=288K

Final pressure, Py = 4.8 bar = 4.8 x 105 N/m?
Final temperature, T,=T,=288K

The process is shown on a p-v and a T-s diagram in Figs. 5.32 (@) and 5.32 (b) respectively.
The shaded area in Fig. 5.32 (a) represents work input, and the shaded area on Fig. 5.32 (%)

represents heat rejected.
Characteristic gas constant,

. Universal gas constant, Ry _ 8314 _ 297 Nm/kg K

Molecular weight, M 28
AP (Vm')
48x10° 2
Isothermal
compression
process

—

1.06 % 10° 7///////////////////////1 >

v (m°/kg)
{a
T(K)4 4.8 bar s
0.04m
1.05 bar
2 1

7

S2 St g (kikg K)

)
Fig.5.32
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Now, using characteristic gas equation (to find mass ‘m’ of nitrogen), we have :

p,V, = mRT,
oo V1105 10° x 0.04 0.0491 K
RT, 297x288 T o

(i} The change of entropy,

S,- S, = mR log, £L

D3
297 106
= 0.0491 x =2 log, |2
* 108 1% (4.8)
ie. S,— 8, = - 0.02216 kJ/K.

Decrease in entropy, S, - 8, = 0.02216 kJ/K. (Ans.)
. (ii) Heat rejected = Shaded area on Fig. 5.32 (b)
= T(S, - 8,) = 288 x 0.02216 = 6.382 kJ. (Ans.)
(iit) For an isothermal process for a perfect gas,
W=1¢0=06382kJ
Hence, the work done on air = 6.382 kJd. (Ans.)

Example 8.25. 1 kg of gas enclosed in an isolated box of volume v, temperature T, and
pressure p, is allowed to expand freely till volume increases to v, = 2v,.
Determine the change in entropy.
Take R for gas as 287 kJikg K.
Solution. During the process of free expansion in an isolated box,
AU=0,W=0and @=AU+W=0

The process is represented by dotted line on p-v diagram as shown in Fig. 5.33 (a) where
b, = 2!)1.

Pae Ta
1 ) Isothermatl
N\ Irreversible expansion
Y /free expansion 1 _L»_ 3
\‘k\
s
Y (malkg) ®
{a) (b)
Fig.5.33

To calculate the entropy change, assume that the irreversible free expansion process is
replaced by a reversible isothermal process as temperature in free expansion remains constant, in
such a way that the volume increases to double of its original as shown in Fig. 5.33 (b). As the work
is developed by the system and heat is given to the system at constant temperature, during iso-
thermal reversible system then as per first law of thermodynamics :
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AU=0,g=W
ie., Q:rzp,dy
Ul
v RT
=I = dy [ pv:RTandp:R—ji}
(R v
v
=RT log, 2
Oge o,
Q

Vg
X _Rlog -2
T Oge 2]
But this is the expression for change in entropy of the system. Entropy being the property of

the system, its change is same whether it is reversible or irreversible process.
For the given process,

2]

As= R log, | ==

1
= 287 log, (2) [+ v, =2v, (given)]
= 198.9 kd/kg K

Hence change in entropy = 198.9 kJ/kg K. (Ans.)

Example 5.26. 0.04 kg of carbon dioxide (molecular weight = 44) is compressed from 1
bar, 20°C, until the pressure is 9 bar, and the volume is then 0.003 m®. Calculate the change of
entropy.

Take ¢, for carbon dioxide as 0.88 kJ/kg K, and assume carbon dioxide to be a perfect gas.

Solution. Mass of carbon dioxide, m = 0.04 kg

Molecular weight, M =44

Initial pressure, j o 1 bar = 1 x 10° N/m?

]

Initial temperature, T, = 20+273 =203 K
Final pressure, py; = 9 bar

Final volume, V, = 0.003 m?

¢, for carbon dioxide = 0.88 kd/kg K

Change of entropy :

3
T(K)4 0.003 m g bar

1 bar

=293 K

Sz s Sa s (kJkg K)

Tig. 5.34
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Characteristics gas constant,

= == — = K
R i, vy 189 Nm/kg
To find 7, using the relation,
p,V, = mRT,
5
_ pVa _ 9x10°x0003
T= R = ooax1s9 - oK
D 189 9
Now s, — 8, = & log, p—f =10 log, [I)
= 0.4153 kJ/kg K
Also at constant pressure from 1 to A
T. (357
—s,=c log, =2 =088 log, | —
Sy — 8, = ¢, log, T, og, k293]
= (0,1738 kJ/kg K
Then {5y -8,) = (s, —8,) — {54, —5)

= 0.4153 - 0.1738 = 0.2415 kJ/kg K
Hence for 0.04 kg of carbon dioxide decrease in entropy,
S, — 8, = mls; -~ 5,) = 0.04 x 0.2415
| = 0.00966 kJ/K. (Ans.)
Note. In short, the change of entropy can be found by using the following relation :

(s,~s)=c,log, ;f -Rlog, % = .88 Jog, [%J—%ﬁ- log, (’51)‘]
=0.1738-0.41563 =-0.2415kJ/kg K
8,-S, =mls,—s,) = 0.04 x (- 0.2415)
= ~0.00966 kJ/K
{— ve sign means decrease in entropy)
or 5, -8, = 0.00966 kJ/K.

Example 5.27. Calculate the change of entropy of 1 kg of air expanding polytropically in o
eylinder behind a piston from 7 bar and 600°C {o 1.05 bar. The index of expansion is 1.25.

Solution. The process is shown on a T-s diagram in Fig. 5.35.

Initial pressure, py=Tbar =7 x 10° N/m?
Initial temperature, T, =600+ 273 =873 K
Final pressure, py = 1.05 bar = 1.05 x 10° N/m?
Index of expansion, n =125
Mass of air =1kg
To find T,, using the relation,
r-1
T, _ ( I ]n
'} P
125-1
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T(K)¢ 7 bar
1.05 bar
600 +273) 11 1 A
=873 K
T, 2
5 S, Sa s (kdiKg K)
Fig. 5.35
0z
or T, = 873 x (@} L 873 x (0.15)°2 = 597.3 K.

Now replace the process 1 to 2 by processes, 1 to A and A to 2.
Then at constant temperature from 1 to A,

u
sy-s;=Rlog, o> =Rlog, 7 = 0287 log, [1—70—5) - 0.544 kJ/kg K.
T4 7 bar
1.05 bar
T, L >
T, 5
Sp 3y Sy s (kd/kg K)
Fig. 5.36
At constant pressure from A to 2
L1 873
s,—8,=c log 7 =1005lcg —— =03814 kJkg K
AT =6 0% T, % 5973 e
Then 8, — 8; = 0.544 — 0.3814 = 0.1626 kJ/kg K

ie., Increase in entropy = 0.1626 kJ/kg K. (Ans.)

273
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Note that if in this problem s, — 5, happened to be greater than s, - s,, this would mean that
s, was greater than s,, and the process should appear as in Fig. 5.36.

Note. The change of entropy can alse be found by using the following relation :
n-y )
52 - S] = Cv n-1 loge Tl

1.25 - 1.399 587.3 ¢p 1006
=0.718( 125-1 ]lﬂge[ ) [. ’Y=———=———=1,399]

873 c, 0718
= 0.718 x (- 0.596) x (- 0.3795) = 0.1626 kJ/kg K (increase).

Example 5.28. In an air turbine the air expands from 7 bar and 460°C to 1.012 bar and
160°C. The heat loss from the turbine can be assumed to be negligible.

(i) Show that the process is irreversible ;

(ii) Calculate the change of entropy per kg of air.
Solution. Refer Fig. 5.37.

Initial pressure, p; = 7 bar = 7 x 10° N/m?

Initial temperature, 7, = 460 + 273 =733 K

Final pressure, Py = 1.012 bar = 1.012 x 10° N/m?
Final temperature, T, = 160 + 273 = 433 K

T} 4

-

[

8,=8 8§, s (kJ[ka K)

Fig. 5.37

{i) To prove that the process is irreversible :
Since the heat loss is negligible, the process iz adiabatic.

For a reversible adiabatic process for a perfect gas, using the following equation, we have :

1-1
L, (p\7
L=y

L _ (1012 (M
EE I
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0.4
T, = 733 x (@]1-4 = 733 x (0.1446)°2% = 4216 K

= 421.6 - 273 = 148.6°C.

But the actual temperature is 160°C at the pressure of 1.012 bar, hence the process is
irreversible. Proved.

(if) Change of entropy per kg of air :

The change of entropy s, — s,, can be found by considering a reversible constant pressure
process between 2 and 2

sy~ 8,=c, log, 22 = 1.005 log, —2- = 0.02681 kl/kg K
L ¢ 4216

ie., Increase of entropy, s,’ — s, = 0.02681 kd/kg K. (Ans.)

=wExample 5.28. A fluid undergoes a reversible adiabatic compression from 4 bar, 0.3 m*
to 0.08 m? according to the law, pv'?® = constant.

Determine :(i) Change in enthalpy ; (i) Change in internal energy ;

(iii) Change in entropy ; (iv) Heat transfer ;

(v) Work transfer.

Solution. Refer Fig. 5.38.

p (V)4
v {m/kg)
Fig.5.38
Initial volume, V, =0.3 m?
Initial pressure, Py = 4 bar = 4 x 10° N/m?
Final volume, V, = 0.08 m?

Law of compression : pvl2 = constant.
For reversible adiabatic process,
V" = pVy"
P o_ [l&)
or n - \V

V)n 03 1.256

.
- 24 [ 03 )7 L 2087 bar.
P2 =Py [Vz (0.08)
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{i) Change in enthalpy, H, - H, :

H I
We know that, dH =| Vdp A1)
H, M
Also pVy" =pV"
V" n
| A

Substituting this value of V in egqn. (i}, we get

fran-L[]

‘ P2
= (Plvln)lm J‘ P 1n dp
P1

2]
——1-+1

n
_ (plvlu)lfn p ;
-—+1

n 1551

- [(plv:ln)]lfn |>P2(1—r];] "Pl(l_%J-l
1-- |
]

n

1 1
z(plvln)un » (?’i_l) (pz)[l_ij _(pl)(l_n]

nlpaVo — pV5)
- MPa¥a = PaVa) [+ p,Vy? = p,Vy]

{n-1)

1.25 .
=———=2__ [20.87 x 10° x 0.08 — 4 x 105 x 0.3] kJ
(125~ 1)x10

125 .
s 105 (20.87 x 0.08 — 4 x 0.3) kJ = 234.8 kJ.
025 10

Henee, change in enthalpy = 234.8 kJ. (Ans,)
(if) Change in internal energy, U, - U, :
H, - Hy = (Uy + p,Vy) - (U + p, V)
= (U, - Up + (p,V, - p,V})
U,- U, =(Hy~ H)}~{p,V, - p,V))
20.87 x 10° x 0.08 — 4 x 10° x 0.3] ]
3
10
= 234.8 — 46.96 = 187.84 kd.
Hence, change in internal energy = 187.84 kJ. (Ans.)
(tii) Change in entropy, S,-8,=0. (Ans.)
(iv) Heat transfer, Q,, = 0. (Ans.))

= 234.8 - (
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{v) Work transfer, W, _, :
Qo =W~ U)+ W,
Wip=Q - W,-Up
=0~ 18784 = ~ 18784 kJ
Hernice, work done on the fluid = 187.84 kJ. (Ans.)

wExample 5.30. An insulated cylinder of volume capacity 4 m? contains 20 kg of nitro-

gen. Paddle work is done on the gas by stirring it £ll the pressure in the vessel gets increased
from 4 bar to 8 bar. Determine :

(i) Change in internal energy,
(it) Work done,
(iii) Heat transferred, and
(iv) Change in entropy.
Take for nitrogen : c, = 104 kJ [kg K, and ¢, = 0.7432 kJ kg K.

Solution. Pressure, p, = 4 bar = 4 x 10° N/m?
Pressure, Py, = 8 bar = 8 x 105 N/m?
Volume, V,=V,=4m?
and it is constant for both end states.
B _P
Now, T, T,

T, _py_8x10P

. T p 4ax106
Also, R=c,~¢, =104-07432 = 0.2968 kJ/kg K.
The mass of the gas in the cylinder is given by
_ 2V eV
m=pm  Or mT = R
_pV; | 4x10Px4
mTy =5 = Goge8 <1000 - 20N08ke K
5
and mTy = Ez}%’z - 8x10°x4 o816 kg K.
0.2968 % 1000

(i) Change in internal energy,
AU = (U, - Uy

= me, (T, - T)) = ¢, (mT, — mT,)

= (.,7432 (10781.6 —~ 5390.8) = 4006.4 kJ. (Ans.)
(#i) Work done, W :
Energy in the form of paddle work crosses into the system, but there is no change in system

boundary or pdv work is absent. No heat is transferred to the system. We have
Qo =U-Up+ W,

But Q,=0
W, ,=—-(U,- U} =~ 4006.4 kJ or kN-m. (Ans.)
(iii) Heat transferred, @, , = 0. (Ans.)
(tv) Change in entropy,

T
S, - 8, = me, log, T%
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For constant volume process
=20 x 0.7432 log, 2 = 10.3 kJ/K. (Ans.)
Example 5.31. 5 m? of air at 2 bar, 27°C is compressed up to 6 bar pressure following

pvi3 = constant. It is subsequently expanded adiabatically to 2 bar. Considering the two processes
to be reversible, determine the net work. Also plot the processes on T-8 diagram.

Solution. Refer Fig. 5.39.
Given: V,=5m?; p,=2bar; T, =27+273=300K; p,=6bar; p;=2bhar
Net work :

Ap AT(K)

Fig. 5.39.p-V diagram. Fig. 5.40.T-s diagram.

_ Y ___2x105><5
" RT, 287x300
Considering polytropic compression process 1-2, we have

Mass of air, m = 11.61 kg.

n-1 13-1

L_ ()" o 32_:(2)7 or T,=3865K.
T, \pt 300 \2

Considering isentropic process 2-3, we get

11 1! 14-1
E{BA] ! =(!2] ! =(E) 14 - 1.369 (- py=py
T; \ps P: 2
B _3865 .03k

37 1369 1369
Now, work done during polytropic compression 1-2,

W, = mele 1’1"2) _ 1161x 0.2;5;.(_3(1)0 386.5) - — 960.7 kJ
and, work done during adiabatic expansion 2-3,
mRB(T; - T3)  1161x0.287(386.5 - 282.3)
y-1 14-1
Net work done = W, , + W, ; = —960.7 + 868 = — 92.7 kJ
Hence net work done on the air = 92.7 kJ. (Ans.)

The process plotted on T-s diagram is shown in Fig. 5.40.

Wyy= = 868 kJ
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Example 5.82. A rigid cylinder containing 0.004 m? of nitrogen at 1 bar and 360 K is
heated reversibly until temperature becomes 400 K. Determine :

(i) The heat supplied. (ii) The entropy change.
Assume nitrogen to be perfect gas (molecular mass = 28) and take v= 1.4

Solution. Given : V, = 0.004 m®; p, = 1 bar; T)=300K;T,=400K; Mfor N, = 28 ;
¥=14d.
(i) The heat supplied :

Ry (Universal gas constant) 8.314
G tant B = = =0.297k K
as cons M (Molecular mass) 28 e/ke

Mass. m < P1V1__ (1x10°)x0.004

= 0.00449 kg
RT, ~ (0.297 x 1000) x 300
R 0.297
= —==—— = 0.742 kJ/kg K
S S V| e
Heat supplied = m ¢ (T, - T,)

= 0.00449 x 0.742(400 - 300) = 0.333 kJ. (Ans.)
(i} The entropy change :

The entropy change, S, - S, = m ¢, log, (%J
1

= 0.00448 x 0.742 x log, (%) =9.584 x 10 kJ/kg K. (Ans.)

Example 5.38. A piston-cylinder arrangement contains 0.05 m? of nitrogen at 1 bar and

280 K. The piston moves inwards and the gas is compressed isothermally and reversibly until the
pressure becomes 5 bar. Determine :

(i) Change in entropy.
Assume nitrogen to be a perfect gas.
Solution. Given : V; = 0.05 m?; p, = 1 bar; T, = 280 K ; p, = 5 bar.
(i) Change in entropy, (S, - §)) :

(i) Work done.

Gas constant, R= % = 8-3;4 = 0.297 kJ/kg K
Mass of the gas, "= 4! __ (x 10%) x 0.05

= 0.06 kg
RT;  (0.297 x 1000) x 280

Change in entropy S, - S, = mR log, (_;’_1)
p)

= 0.06 x 0.297 log, (%J - - 0.0287 kJ/K. (Ans.)

Heat interaction, Q@=T18,-85)
= 280 x (— 0.0287) = — 8.036 kJ
Work done, W=@Q=-8.036 kJ. (Ans.) {*+ In its other process, W= Q)

Alternatively : W = p,V, log, (—‘{2—] = gV, log, (&J
. v, o

= 1% 10° x 0.05 x log, (_51-) x 103 kJ = 8.04 kJ
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Example 5.34. I kg of air initially at 8 bar pressure and 380 K expands polytropically
(pv’2 = constant) until the pressure is reduced to one-fifth value. Calculate :

(i} Final specific volume and temperature.
(i) Change of internal energy, work done and heat interaction.
(iii) Change in eniropy.
Take: R = 0287 kJ/kg K and yv= 14.
Solution. Given : m = 1 kg ; p, = 8 bar ; T| = 380 K ; Law of expansion : pv!? = constant ;

Py = ﬂ:% = 16bar; R = 0.287 kJ/kg K ; v= 04,

5
(i) Final specific volume and temperature, v,, T, :
py, = BT,
3
or, b, = RT; _(0.287x 10 ;x 380 _ 0.1363 m¥kg.
141 8x10
n n
Also, Pt =P, or U, =0 x(—]
1Y A 2=y P
1
v, = 0.1363 x (%) 12 _ 05211 m¥kg. (Ans.)
n-1 12-1
Again, I?.:(&] " oor T :(1] 12
L \p 380 \5
T,=2906 K

povy 16 x 10° x 0.5211
R 287

(ii) Change of internal energy, work done and heat interaction :
Change of internal energy

l:Alternatively 1 Ty = =290.6 K]

g -y =Ty~ Ty = %(Tg—ﬂ)
_ 0.287
T 14-1

- T —T)
Work done, W, ,= s I;ZUZ = R, 1 2)
n— n—

0.287(380 - 290.6
= (12 1 ) = 128.29 kJ/kg (Work done by air). (Ans.)

Heat interaction, @, , = (u, — u;) + W = — 64.14 + 128.29 = 64.15 kd/kg (Heat
received). (Ans,)

(2906 — 380) = — 64.14 kJ/kg (Decrease). (Ans.)

{Alternatively Q= = ew= 14-12

x 12829 = 64.15 kd/kg
y-1 14-1

(iii) Change in entropy, (s, - s,) :

T v
— 8, = -2+ Rlog, %
s, — 8, =c, log, T, Ee by
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0.287 [ 290.6
x log,

05211
= 0287 29061 | 09871
14-1 380 ] OFe (0.1363J

=—0.192 + 0.385 = 0.193 kd/kg K (increase). (Ans.)

Example 5.35. (¢) Show that approximate change of entropy during a polytropic process
equals the quantity of heat transferred divided by the mean absolute temperature.

(b) One kg of air at 290 K is compressed in a cylinder according to the polytropic law
pul? = constant. If the compression ratio is 16, calculate the entropy change of air during the
compression process stating whether it is an increase or decrease.

What would be the percentage error if the entropy change is calculated by dividing the
quantity of heat exchanged by the mean absolute temperature during the process ?

Take Y= 14 andc, = 0.718 kJ/kg K.

Solution. (a) In Fig. 5.41 curve 1-2 represents the 4T
polytropic process (pu" = ¢) from state point 1 to state point
2. The area under the process curve 1-2 on 7-S diagram T,
represents the heat transferred during the process. The slope
of the curve 1-2 is usually small and can be considered to be
a straight line (shotted dotted).

Heat transferred = Area of trapezium 1-2-3-4

= Base x mean ordinate

T+ 7,
=def4~'~25—%J

\

Oy

= Entropy change x mean absolute

temperature during the process
_ Heat, transferred
" Mean absolute temperature

(b} Given : m =1kg; T, =290 K ; pv!? = constant ; r =16 ; y=14; ¢, = 0.718 kJkg K

or, Entropy change

-1
. L (v Yz
For a polytropic process : =2 =|-L

1 \P2
or, T, = 290 x (16)*%! = 666.2 K
n- T
Now, 8 — 8, = ¢, [r{] log, [-ﬁ!—] ... per kg
13-14 666.2
= (.718 |1 =-0.199 kJ K. (Ans.
(13-1) "[290} /kg K. (Ans.)

The —ve sign indicates decrease in entropy.
Heat transferred during the process is given by,
« R(T -Ty o

=c, (:’;:I;J(Tl - T,) ..per kg

g=1""xw=12"
y-1 y—-1 n-1

- R
- 0.718[1—145_35] (290 — 666.2) = — 90.04 kJ/kg ( ¢, = ﬁﬁ]
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_ NI+ T, _ 290 +666.2

Mean absolute temperature, T 5 5 = 478.1 K
Approximate change of entropy = Q@ _-%004 =-0.188 kd/kg K
Tean 4781
% age error = % x 100 = 5.53%. (Ans.)

e The approximate value of entropy change is lower, because in the relation @ = T, x dS
actual value of heat transferred is substituted instead of approximate value {i.e., Area
under the straight line) which is higher.

Example 5.86. 1.2 m? of air is heated reversibly at constant pressure from 300 K to 600 K,
and is then cooled reversibly at constant volume back to initial temperature. If the initial pres-
sure is 1 bar, calculate :

(i) The net heat flow.

(&) The overall change in entropy.

Represent the processes on T-S plot.

Take ¢, = 1.005 kJ/kg K and R = 0.287 kJ kg K

Solution. Given : V, =1.2m?; p,=p,; T, =300K; T, =600K; p, = 1 bar;
¢, = 1.005 kd’kg K ; R = 0.287 kJkg K

Fig. 5.42 shows the T-S plot of the processes.

) The net heat flow, Q : t
x 10% x 600 K
Mass of air,  m = 1;;{11 - (0.2817 xlfooml 3 s00 - 1394 ke
Q=@+ 6y,
=me,(Ty - T)) + me (T3 - Ty)
= me Ty~ Ty + meT,~T) .o Ty =Ty ao0k
=m(Ty - TMe,—c)=m(T,-TPx R

1.394(600 — 300) x 0.287 = 120 kJ. (Ans.)

(if) The overall change in entropy :
Entropy change during constant pressure process 1-2,

T
8, ~ 8, = me, log, ?1

= 1.394 x 1.005 log, (%) = 0.9711 kJ/K

Entropy change during constant volume process 2-3 ;
T I
S, - 8, = me, log, (Fz] =m(c, — R)log, (}‘-2—

300
= 1.394 x (1.005 — 0.287) log, (303) = - 0.6938 kJ/K
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Overall change of entropy
=(8, - 8) +(S;- 8y
= 0.9771 + (- 0.6938) = 0.2833 kJ/K. (Ans.)

Example 5.37. A closed system contains air at a pressure 1 bar, temperature 300 K and
volume 0.018 m?. This system undergoes ¢ thermodynamic cycle consisting of the following three
processes in series : (i) Constant volume heat addition till pressure becomes 5 bar, (ii) Constant
pressure cooling, and (iii) Isothermal heating to initial state.

Represent the cycle on T-8 and p-V plots and evaluate the change in entropy for each
process.

Take c, = 0.718 kJ /kg K and R = 0.287 kdJ /kg K.

Solution. Given : p, = 1bar; T, =300 K; V, = 0.018 m3; p, = 5 bar ;

c,=0.718 kd/kg K ; R = 0.287 kd/kg K.

4T 4p
2 p=C
3 2
AV=C
T=0C
Vv=C ’
S >V

Fig. 5.43. T-S and p-V diagrams.

pVy (1% 10%)x0018

i = = 0.0209 k,
Mass of air, m = B = 10 287 x 1000) x 300 £
Refer to Fig. 5.43.
¢ Constant volume process 1-2 :
n_m Py 5
el =T x2- 2 1500 K
7T or T,=T, x . 300 x 3
. T
Change in entropy, 8, - 8, = mc_ log, T
1
1500
= 0.0209 x 0.718 x log, 300 ) = 0.0241 kJ/K. (Ans.)

e Constant pressure process 2-3 :
T,=T,=300K
Now, change in entropy,

T:
83 - 8, = mc, log, {%J = mic, + B) log, (?:J
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= 0.0209 x (0.718 + 0.287) x log (ﬁ)
*\ 1500
= - 0.0338 kJ/K. (Ans.)
o Constant temperature (isothermal) process 3-1 :
P3 =Py =5 bar
Change in entropy,

P3
8, - 8; = mR log, [P_lJ

= 0.0209 x 0.287 x log, (g] = 0.00965 kJ/K. {(Ans.)

Example 5.38, Derive expressions for entropy change with variable specific heat.

Solution. Let us assume that the specific heats of a gas vary with temperature according
to the linear relations :

€, =a+ kT, and c,=b+ kT
where, a, b and % = Constants, and T' = Temperature, K.
For unit mass ofgas, Q=Tds =du + pdv

= e dT + pdv
or, ds = cug+p%dv=cy%+li%Ii (- pv=RT)
Now, R=c,—c,=(a+kN}-b+kN=a-b

ds=b+ kD L s @b
T v

This is the differential form of entropy change.
Integrating both sides between limits 1 and 2, we get

T,
s,~s, = blog, (“i‘?"] + KT, - T)) + (a—b) log, (—zﬂ (1)

For the entropy change the following expressions can be obtained by suitable manipulations
to egn. (1) :

1. Expression for entropy change in terms of temperature only :

& _ (ﬂ)n—l
L \v

or, logeﬁz(n-l) log, E~1-J=~-(n—1)loge [E"-J
. Uy (51
T a-b T
8, — 8 = bl 22 (T -T)— z2 ...[From egn, {1)]
2~ 8 Oge(Tl +R(T; - T) (nmlJ]og" [TJ q
or, 8y -8, = [b— ::I; log, (%J+ k(T -T)) AE)
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2. Expression for entropy change in terms of pressure, volume and temperature.
From eqn, (1), we have

S9— 8§ = bloge(i1 ]+k(T2—T1)+aloge[ IJ bloge(vz]

1 vy

=aloge{ }+bloge[T x-—]+k(T -1}
! T, v

or, 8y~ 8, = aloge[ J+bloge (sz+k(T2 -T) (i)
Uy 41

3. Expression for entropy change in terms of pressure and temperature only.
Again, from eqn. (1), we have

8y~ 8, = bloge(;]+k(T‘Z—T1)+aloge( 1) bloge(vlJ

=alog, (ExﬂJﬂvloge [Exﬂ]-a-k(Tz—Tl)
Iy p Iy v

= a log, (ﬁJ - alog, (22—] +blog, (32—} +k(T, -T))
U n Py

7 B
_ = 1 2 b~ 1 s
or, 8, — 8, = alog, [TIJ+( a) oge[ )

® Derivation of the formula T  v3%*T = constant for the adiabatic expansion of gas :

] +k(Ty - Ty .. (§ii)

We know that, ds = (a—b)éz+(b+kT)d—;‘

v
s5,—-8;=alog,v-blog,v+blog, T+ kT )
=alog, v+blog, (zj-r»kT

=alog, v+blog, (RJ + kT t = () for adiabatic expansion
» b
+ kT
a- bJ
This gives : v® p? e*T = constant
pvo? etT = constant
T® vo-YetT = constant

The above expressions can be obtained by taking kT on right-side and taking the antilog of
the resulting expressions.

=alog, v +log, [
)

Example 5.39. Determine the entropy change of 4 kg of a perfect gas whose temperature
varies from 127°C to 227°C during a constant volume process. The specific heat varies linearly
with absolute temperature and is represented by the relation :

c, = (0.48 + 0.0096 T) kJ kg K.
Solution. Given : m =4 kg; T, =127+ 273 =400 K ; T, = 227 + 273 = 500 K ;
= {0.48 + 0.0096 T) kd/kg K.
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Entropy variation for a constant volume process is given by :
dS = me, d?T, or, dS =4 x (0.48 + 0.0096T) %
Integrating both sides, we get,

T T
8,-8 =4x048 dT+4x00096 | dT
2 1 n n

= 192 log, {T } +0.0384 (T, — T))

n

400
ie., S, - 8, = 4.268 kJ. (Ans.)

Example 5.40. The specific heats of a gas vary linearly with absolute temperature accord-
ing to the following relations :

c, = (0.85 + 0.00025 T) kg/ kg K, and

c, = (0.56 + 0.00025 T) kJikg K

If the entropy of the gas at 1 bar pressure and 273 K is zero, find the entropy of the gas at
25 bar and 750 K temperature.

Solution. Given : ¢, = (0.85 + 0.00025 T) kd/kg K ; ¢, = (0.56 + 0.00025 T) kJ/kg K ;

py=1bar; T =273 K; p, = 25 bar ; T, = 750 K.
We know that, ds—cv%,z+%d = d;-' dv
Integrating both sides, we get,

Sy 8 = J.c ——+Rloge(vl)

dT T
j — +ic, c)lo,cg,re(p2 Tl)

- j(? +0. 00025)dT +0.29 log, (

500
= 1.92 log, (-—0—) + 0.0384(500 — 400) = 4.268 kJ/K

1 750
25~ 273

_ [0.56 log, [; ] +0.00025 (T, - )] 0.6404
1

- 056 log, (732) + 0.00025(750 — 273) — 0.6404 = 0.0448 kJ/kg K

ie., s, - 8, = 0.0448 kd/kg K. (Ans.)

Example 5.41. An insulated vessel of 0.5 m® capacity is divided by o rigid conducting
diaphragm into two chambers A and B, each having a capacity of 0.25 m®. Chamber A contains
air at 1.4 bar pressure and 290 K tempercture and the corresponding parameters for air in cham-
ber B are 4.2 bar and 440 K. Calculate :

(i} Final equilibrium temperature,

(ii} Final pressure on each side of the diaphragm, and

(iit) Entropy change of system.

For air take ¢, = 0.715 kJ/kg K and R = 0.287 kJ kg K.
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Solution. Given : V, = 0.25 m3 iPy; = ldabar; Ty =290K; V, =025 m3; Pg; = 4.2 bar ;
Ty, =440K ; ¢, = 0.715 kJ/kg K.

(i) Final equilibrium temperature, T,

_ Vi (L4x10°)x 025
M f air, = Pai¥a _ -0
ass of air ™A= RT, (0287 1000)x 290 ~ 4205 ke

pa:Va _ (42x10%)x025
RTp;,  (0.287 x 1000) x 440
Let T, be the final equilibrium temperature (K). Since the diaphragm is conducting,
Heat gained by air in chamber A == Heat lost by air in chamber B
my ¢, (T;— 290) = my (440 - T))
or, 0.4205 x (T, - 290) = 0.8315(440 — Ty
or, 0.4205 T, - 121.94 = 365.86 — 0.8315 T,
: T, = 389.6 K. (Ans.)

(i) Final pressure on each side of the diaphragm : p,, ; pg,

mB = = 0.8315 kg

14 x 389.6
= ————— = 1.88 bar. {Ans.
Par= "a90 ar. (Ans)
4.2 x 389.6
pr= T = 3.72 bal'- (Ans-)

(iii) Entropy change of the system :
Entropy change for chamber A = m, ¢, log, [-j‘"—]

Tr
Ai
= 0.4205 x 0.715 x log,
Ty

@} - 0.0888 kJ/K
290
Entropy change for chamber B = m; ¢, log, [T_J
Bi
- 0.8315 x 0.715 x log, (%) = - 0.0723 kJ/K

Net change of entropy = 0.0888 + (— 0.0723) = 0.0165 kJ/K. (Ans.)

Example 5.42. A certain gas has a specific heat at constant volume of 1.25 kJikg K. When
it is expanded reversibly and adiabatically from a specific volume of 0.0624 m3ikg and a tempera-
ture of 530 K to a specific volume of 0.186 m3kg its temperature falls by 165 K. When it is
expanded into an evacuated space from the same initial condition to the same final specific
volume its temperature falls only by 25 K,

Find the change in entropy in each of the adiabatic processes.
Solution. Refer Fig. 5.44.

Specific heat of gas at constant volume, ¢, = 1.25 kJ/kg K
Initial specific volume, v, = 0.0624 m¥kg
Initial temperature, T,=530K

Final specific volume, vy = 0.186 m¥kg
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Temperature fall when expanded reversibly and adiabatically = 165 K
Temperature fall when expanded into an evacuated space = 25 K

4T(K)
Constant volume line
3
0.0624 m /k
T1 =530 1 ( g)
25 T —1 i - Constant volume line
T bbbkt Rihbhb bbb bbbl 3 (0.186 m’kg)
165
A
T, 7
2
s, =8, s, s(ikJrkg K)
Fig. 5.44

Change in entropy :
Path 1-2 : Reversible adiabatic process.
Change in entropy, (s, — 5;) = 0.
Path 1-3 : Adiabatic process such that v, = 0.186 m®/kg (= v,
(States 2 and 3 lie on the same constant volume line on T-s diagram)
and T,-T,=25K
Change in entropy during this adiabatic process = s,-s,.
To calculate (s;-s,) a reversible path has to be selected joining 3 and 1.
This is achieved by selecting the reversible adiabatic path 1-2 and the reversible constant
volume process 2-3.
83— 8; = (85— 8,) + (8, — 5)
=1{8;—8y) +0=(85-38,
= ¢, log, % = 1.25 log, (géggf_-l%%]

= 1.25 log, (%] = 04058 ki/kg K. (Ans.)

Example 5.43. A heat pump operates between two identical bodies which are at tempera-
ture T, and cools one of the bodies to a temperature T, (T, < T,). Prove that for this operation the
minimum work required by the heat pump is given by

T2
W=Cp[ﬁ+T2—2T‘1]

where c, is the specific heat which is same for both the bodies.
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Solution. The arrangement is shown in Fig. 5.45.

For the minimum work absorbed by the heat pump, the heat pump must be reversed
Carnot cycle engine and the required condition is

d
H—T;QJ =0
For infinitely small changes, we can write

dT, dT.
€yt +Cp 2 =
P p712—0

If 7, is the final temperature of the high level reservoir, then the above equation can be

written as
T T; Source
j[ﬂ)_[(ﬁ] -0 T
i Tl T T2
il T,
log, [TIIJ + log, [TJ =0=log, (1)
AQ X
nWh)
log, [ ,}22J =log, (1)
1 . Heat W
T yin pump
1 T2
Now the work given to the heat pump
= Heat rejected at higher level temperature 2Q,
— heat picked up at lower level temperature
T T
W= e[ @D-c, | @) Sk
T T, T
=c, (T -T) - T~ Tl=¢, (T + T, - 2T)) 2
Now substituting the value of T’ in the above equation in terms of Fie. 5.45
g. 5.

T and T,

W=e, [%12+T2 —2T1} . Proved.
2
ssExample 5.44. The connections of a reversible engine to three sources at 500 K, 400 K
and 300 K are shown in Fig. 5.46. It draws 1500 kJ/min of energy from the source at 800 K and
develops 200 kJ/min of work.
(i) Determine the heat interactions with the other two sources of heat.
(if) Evaluate the entropy change due to each heat interaction with the engine.
(@ii) Total entropy change during the cycle.
Solution. Refer Fig. 5.46.
Temperature of source 1 = 500 K
Temperature of source 2 = 400 K
Temperature of source 3 = 300 K
Heat energy drawn from source 1, @, = 1500 kJ/min
Work developed, W = 200 kJ/min.
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Source-1 Source-2 Source-3
500 K 400 K 300 K
Qv YQ,

Heat D
" engine - 4
ya
-
Q,
Fig. 5.46

(i) The direction of heat flow from source 1 is known as given in the problem. Assume that
the quantities of heats €, and @, are taken from heat sources and their directions are arbitrarily
chosen.

For the cyclic operation of the engine

f49) -

Q. @
I A
and Q+Q,-Q;=W
1500 | @ ) .
500 T 400 300 = ° (8)
and 1500 + Q, - Q, = 200 (D)

Solving egns. (i) and (if), we get
@, = — 1600 kJ/min and @, = — 300 kJ/min.
The above values indicate that the direction of @, and @, are reversed. Since @, should be

+v and @, also must be +ve but both are —ve therefore, their assumed directions should be reversed.
The arrangement is shown in Fig. 5.47.

Source-1 Source-2 Source-3
500 K 400 K 300K
YQ, = 1500 kJ/min an = 1600 kJ/min
. Heat .
» engine YQ, = 300 kJ/min
e
w A

Fig. 5.47
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(ii) Entropy change of source 1 = & = ~1500 =- 3 kJ/K. (Ans.)
T 500

Entropy change of sink 2 = % = lf(?(? = 4 kJ/K. {Ans.)
2

:T_g_a =“3_?(’;(’)9=_1ka (Ans.)

{22£) Net change of theentropy =—3+4-~1=0

As the cycle is completed, the net change in entropy must be zero because entropy is a
property.

It may be observed from the new arrangement that the engine takes heat from source 1 and
source 3 and rejects to source 2, only i.e., the equipment does both a heat engine and a heat pump
function.

Example 6.45. The heat capacity of a system at constant volume is given by C,=21°
where Z = 0.045 J/K3

A system is originally at 250 K, and a thermal reservoir at 125 K is available. Determine
the maximum amount of work that can be recovered as the system is cooled down to the tempera-
ture of the reservoir.

Solution. Refer Fig. 5.48.

Initial temperature of the system, T, =250 K

Temperature of the reservoir, T,=125K System

Enrtropy change of source 3

Heat capacity of the system at constant volume is Ty =250K
C,=ZT% = 0.045 T
The product of mass and specific heat (me) is called the Ya )
heat capacity of the substance. The capital letter C,C »
or C, is used for heat capacity
Heat removed from the system HE ——» W
T 125 g
@-=] CUdT=I 0.045 T?dT
T 260
25 1Q,-W
T3
= 0.045 [71 = 2085 (196% 2507
50
Reservoir
=—205.08 x 108 J T,= 125K
125 125
@ 8)en = [ C, T _ ™ ooa572 9L
250 T 250 T Fig. 5.48
25
T2
= 0045] TdT = 0045[ I
250
= % (1252 — 2502) = — 1054.7 J/K
Q-W . 3 _
A8 - 205.08x 10° - W IK

reserveir Treservoir 125
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or

or

i.e.,
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(A 8} orking fluid in #E = 0
20508 x 108 - W

(A S)aniverse = (B 8),piom + (A 8} vy = — 1054.7 + s
Since (A 8)niverse = 0

3

— 1054.7 + 205.08 x 10° - W >0

125

W W

— 1054.7 + 1640.64 — 195 20 or 585.94 — 125 20
W W

Winax) = 585.94 x 125 = 73.24 kJ. (Ans.)

{max.

Example 5.46, In an insulated duct air is flowing steadily. The pressure and temperature

measurements of the air at two stations A and B are given below :

Station Pressure Temperature
A 140 kPa 60°C
B 110 kPa 15°C

Establish the direction of the flow of the air in the duct.
For air assume that :
¢, = 1.005 kJ/kg K
v 0287
h= c, T and 7= —;—-

where p, v and T are pressure (in kPa), volume (in m%kg) and temperature (in K) respectively.

Solution. From property relation,

Tds = dh - vdp
. dh _ udp
ds= -7

For two states at A and B the entropy changes of the system is given by

st ds= jTacpdT ~ PEO.287 d_p
84 Ta Pa P

1,
55— 8, = 1.005 log, 78 - 0.287 log, 179

15+ 273 110
= 1.005 loge [604‘273) - 0.287 loge m

= — 0.1459 + 0.0692 = — 0.0767 kJ/kg K

(A8)gytem = — 0.0767 kd/kg K
Since the duct is insulated, (A 8),undings = 0
(A 8)piperee = — 0.0767 kJ/kg K.

This is impossible,
So, the flow is from B to A. (Ans.)

Exampie 5.47. 3 kg of water at 80°C is mixed with 4 kg of water at 15°C in an isolated

system. Calculate the change of entropy due to mixing process.
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Solution. Fig. 5.49 shows the isolated system before mixing. When barrier is removed, the
water from two compartments mix each other. Let ¢ _ is the final equilibrium temperature after
mixing.

/— Barrier
PN NSNS R NSNSV I NSNS ENNEEES VNN NYTFNY]
7

Isolated
system

3kg 4 kg

at 80°C at15°C
(Water) (Water)

Dt ettt

TERRN

e S N
TR TR

P A A i I A A T T A I B A T B A A S

Fig. 5.49

Applying first law of thermodynamics to the isolated system :
Total energy before nuxmg Total energy afier mnung
' (80—0) +4c, (15-0)=T¢,, (¢, -0
le,, = Speclﬁc heat of water at constant pressure]
or 240c + 60c =Tc Coue tm

or 240+60 7,

t,= 200 = 42.85°C

Initial entropy of the system,

80 + 273 15+ 273
=3c,, log, | " 273 | +4c,, log, | Ta73

= 0.7709¢,, + 0.2139 ¢, = 0.9848 ¢,
Final entropy of the system

={3+4) Cons log, [M

= 1.02
573 ) 0205 c,,

Net change in entropy,
AS = Final entropy — Initial entropy
1.0205¢,,, ~ 0.9848 c,, = 0.0357 ¢,
0.0357 x 4.187 kJ/K [ e, = 4187 ki/kg K]
= 0.1495 kJ/K
Hence, net change in entropy = 0.1495 kJ/K. (Ans.)

Example 5.48. A mass ‘m’ of flutd at temperature T, is mixed with an equal mass of the

T, + T, 2
same fluid at T, Prove that the resultant change of entropy of the universe is 2 mc LIJ—%;—;L
112

and also prove that it is always positive.
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Solution. Mean temperature of the mixture = (EZ—TZJ

Thus change in entropy is given by
(T + T2 g

AS = mc ——mcI
T, T (

T dT
n+mie2 T

7+ T
1
mc log, (—1—22,1,11 ] me log, (T +T2]

T+ TR
= mc log, (I%ZJ + mcloge( o, ) mcloge AT T,

= mc log, [%22—:]1 =2 mc log, |: 1T2]

(T +T5)/2
=2 1
v [5552]

i.e., Resultant change of entropy of universe

= 2 me log, {(Tl ;‘T;‘)” 2] «.Proved
112

The arithmetic mean Tl;—Tz is greater than geometric mean ,ﬁi 7.

Therefore, log, D+T/2 g 4 ve.

N
Thus, the entropy of the universe increases.

wExample 5.49. (a) One kg of water at 0°C is brought into contact with a heat reservoir
at 90°C. When the water has reached 90°C, find :

{i) Entropy change of water ;

(ii) Entropy change of the heat reservoir ;

(iii) Entropy change of the universe.

(b) If water is heated from 0°C to 90°C by first bringing it in contact with a reservoir at
40°C and then with a reservoir at 30°C, what will the entropy change of the universe be ?

(c) Explain how water might be heated from 0°C to 90°C with almost no change in the
entropy of the universe.

Solution. Mass of water, m=1kg

Temperature of water, T, =0+273=273K

Temperature of the heat reservoir, T, =90+ 273 = 363 K.

{a) Refer Fig. 5.50. Water is being heated through a finite temperature difference. The
entropy of water would increase and that of the reservoir would decrease so that net entropy
change of the water (system) and the reservoir together would be positive definite. Water is being
heated, irreversibly, and to find the entropy change of water, we have to assume a reversible path
between the end states, which are at equilibrium.
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(i) Entropy of water,

T medT T Reservoir
(A 8)ypyer = _[r] 7 =mc log, 7‘? (90 + 273 = 363 K)

{c = Speciﬁc heat of water)

=1 x 4.187 x log, «g-f.;—g

= 1.193 kJ/kg K- (ADS-) ‘VQ
(ii) The temperature of the reservoir remains con-
stant irrespective of the amount of the heat withdrawn.

Amount of heat absorbed by the system from the
T'ESETVOIT,

Q@ =1x4187 x (363 - 273) = 376.8 kJ
Entropy change of the reservoir,

(s  =_ 9 __ 3768
roemer = T 363
=— 1.038 kJ/K. (Ans.) Fig 550

{(—ve sign indicates decrease in entropy).
(izz) Entropy change of the universe,
(a S)um'verse = (A S)water for system) + (4 s)reservair

= 1193 + (- 1.038) = 0.155 kJ/K. (AnsB

(b) The heating of water is being carried out in two stages, first from 0°C (273 K) to 40°C
(i.e., 313 K) by bringing in contact with a reservoir at 40°C (313 K), and then from 40°C (313 K) to
90°C (363 K) by bringing in contact with a second reservoir at 90°C (363 K).

13 g7 (363 gp 313 363
A STpater = )™ T ¥ J:mmc 7 = 1x4.187 | log 5a5 +log, 573
= 4.187 (0.1367 + 0.1482) = 1.1928 kJ/K.

o)y, g =— X2ASTBI3-2T) _ pomsiak (T
e 313
OF),, p=- LXABTXE63-81Y) G ergrgk ek -
' 363 -
(A8)yw =A8), +A8), +(As), o,

= 1.1928 + (- 0.535) + (- 0.576) = 0.0818 kJ/K.
i.e., [Entropy change of universe = 0.0818 kJ/K. (Ans.)

(¢} The entropy change of universe would be less and less, if the water is heated in more and
more stages, by bringing the water in contact successively with more and more heat reservoirs,
each succeeding reservoir being at a higher temperature than the preceding one. When water is
heated in infinite steps, by bringing in contact with an infinite number of reservoirs in succession,
so that at any instant the temperature difference between the water and the reservoir in contact is
infinitesimally small, then the entropy change of the universe would be zero and the water would
be reversibly heated.

Example 5.50. I kg of ice at — 5°C is exposed to the atmosphere which is at 25°C. The ice
melts and comes into thermal equilibrium.

(i) Determine the entropy increase of the universe.
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(if) What is the minimum amount of work necessary to convert the water back into ice at
-5°C?
Take : C, of ice = 2.093 kJ/kg°C
Latent heat of fusion of ice = 333.33 kJ/kg.
Solution. Mass of ice, m = 1 kg
Temperature of ice = — 5°C (= — 5 + 273 = 268 K}
Temperature of atmosphere = 25°C (= 25 + 273 = 298 K)
Heat absorbed by ice from the atmosphere (Fig. 5.51)
= Heat absorbed in solid phase + latent heat
+ heat absorbed in liquid phase Ya
21x%2.093 x|{0-(-50+1x333.33+1x4.187x(25-0)
= 10.46 + 333.33 + 104.67 = 448.46 kJ.

Atmosphere
25°C

(i) Entropy increase of the universe, (A )

universe : -5
Entropy change of the atmosphere, : Ice 2
Q 448.46

= - = - 1.5049 kJ/K
Fig.5.51

(A 8)ogm == T =~ "398

Entropy change of system (ice) as it gets heated from - 5°C
to 0°C,

273
@ uim = |, M O~ 1x2.003 log, 203 - 00386 ki/K

Entropy change of the system as ice melts at 0°C to become water at 0°C.

333.33
A = ——— = 1.220
(B $1)eyatem 273 9 kJ/K
Entropy change of water as it gets heated from 0°C to 25°C
208 dar

298
(A SIII)mtem = 273mcp T = 1 x 4.187 log, (g"fg) = 0.3668 kJ/K

Total entropy change of ice as it melts into water
(As8),,,=As;+Asg+ Asy
= 0.0386 + 1.2209 + 0.3668 = 1.6263 kJ/K
Then temperature-entropy diagram for the system as ice at — 5°C converts to water at 25°C
is shown in Fig. 5.52.
Entropy increase of the universe,
(A 3) = (As)syatem + (As)atm'
= 1.6263 + (- 1.5049) = 0.1214 kJ/K. (Ans.)

(ii) Minimum amount of work necessary to convert the water back into ice at
- 500, Wm :

To convert 1 kg of water at 25°C to ice at — 5°C, 448.46 kJ of heat have to be removed from
it, and the system has to be brought from state 4 to state 1 (Fig. 5.52). A refrigerator cycle, as
shown in Fig. 5.53, is assumed to accomplish this. The entropy change of the system would be the
same, i.e., s, — S;, with the only difference that its sign will be negative, because heat is removed
from the system (Fig. 5.52).

total

univ.

(As)

eystem = S1— 54 (negative)
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4T(K)
298 4
1 atm.
273
268 333.33 klJ L. 104.67 kd :
\ k\ » s(kJ/kg K)
q—Aa;I Asy ——dit— A sy —
Fig.5.52

The entropy change of the working fluid in the refrigerator would be zero, since it is operat-
ing in a cycle, ie.,

(As)reﬁ'igemtur = 0.
The entropy change of the atmosphere (positive),

(As)atm. = Q ;W

Entropy change of the universe

(As)um'v = (As)system + (A's)refﬁgemtor + (As)a.tm.
JORTARY P SLARYNSPS I §.4.4

By the principle of increase of entropy

(As)univ. or isolated system 20

[(31—34)+Q}W] 20
9—;',1[ 2(s,—3,)
W2T(s,~35)~-@Q
Wiy = T (4~ 5) - Q
Here Q = 448.46 kJ
T=208K
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Atmosphere at
208 K

AQ+W

3H —W

4Q=448.46kJ

1 kg water at
System —w——%t 25°Ctoice at
-5°C

Fig.5.53

5.~ 8, = 1.6263 kJ/K
W = 298 x 1.6263 — 448.46 = 36.17 kJ. (Ans.)

{min)

HIGHLIGHTS

L

Clausius statement :
“It js impossible for a self-acting machine working in a cyclic process, unaided by any external agency, to

" convey heat from a body at a lower temperature to a body at a higher temperature.”

Kelvin-Planck statement :
“It is impossible to construet an engine, which while operating in a eycle produces no other effect except to
extract heat from a single reservoir and do equivalent amount of work”.

Although above statements of second law of thermodynamic appear to be different, they are really equiva-
lent in the sense that violation of either statement implies violation of other.

Perpetual motion machine of second kind (PMM2) is that imaginary machine which would continu-
ously absorb heat from a single thermal reservoir and convert this heat completely into work. The effi-
ciency of such a machine would be 100%.

Clausius inequality is given by,

2 (F)<o

Cycle
“When a system performs a reversible cycle, then

% (%)

Cycle
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4.

5.

but when the eycle is not reversible

2 (7)o

Cycle

‘Entropy’ is a function of a quantity of heat which shows the possibility of conversion of that heat into
work. The increase in entropy is small when heat is added at a high temperature and is greater when heat
addition is made at lower temperature, Thus for maximum entropy, there is a minimurm availability for
conversion into work and for minimum entropy there is maximum availability for conversion into work.
Entropy changes for a closed system (per kg) ;
(£) General case :
{a)e, log, ~TT2 +Rlog “2 (in terms of T and v}
1 !
(b)c log 2. log, *2 (in terms of p and v)
AR & U ]
Ty P2 .
(e)c log == —Rlog £= (in terms of T and p)
A1 ‘D
(ii) Constant volume : ¢, log, 7 (iii) Constant pressure i, log, T
1 1
(iv) Isothermal : R log, le {v) Adiabatic : zero

. . (n- Ty
(vi} Polytropic : c, (n 1J log, T

Entropy change for an open system

ds = %?‘ +Is,.dm, —Es . dm,

where, T, = Temperature of the surroundings.
Subscripts i and 0 refer to inlet and outlet conditions.

OBJECTIVE TYPE QUESTIONS

Choose the Correct Answer:

Second law of thermodynamics defines

(a) heat (8) work (¢} enthalpy
(d) entropy {e) internal energy.

For a reversible adiabatic process, the change in entropy is

(a) zero {b) minimum (c) maximum
(d) infinite (e) unity.

For any reversible process, the change in entropy of the system and surroundings is
(a) zero (b} unity (c} negative
(d) positive (e) infinite.

For any irreversible process the net entropy change is

(a) zero (b) positive (¢) negative

(d) infinite (e) unity.
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10.

11.

12.

13.

14.
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The processes of a Carnot cycle are

{a) two adiabatic and two constant volume

(b) one constant volume and one constant pressure and two isentropics

(c¢) two adiabatics and two isothermals {d) two constant volumes and two isothermals
{e) two isothermals and two isentropics.

Isentropic flow is

(a) irreversible adiabatic flow (b} ideal fluid flow {c) perfect gas flow

(d) frictionless reversible flow (e) reversible adiabatic flow.

In a Carnot engine, when the working substance gives heat to the sink

(a) the temperature of the sink increases

(b) the temperature of the sink remains the same

(¢) the temperature of the source decreases

(d) the temperatures of both the sink and the source decrease

(e) changes depend on the operating conditions.

If the temperature of the source is increased, the efficiency of the Carnot engine

(a) decreases (b) increases

(¢) does not change (d} will be equal to the efficiency of a practical engine
(e) depends on other factors.

The efficiency of an ideal Carnot engine depends on

(a) working substance (5) on the temperature of the source only
(c) on the temperature of the sink only

() on the temperatures of both the source and the sink

(e} on the construction of engine.

The efficiency of a Carnot engine using an ideal gas as the working substance is

T, -T T T.T.
1 2 1 172
(a) T (b) T,-T, (c) T, -1,
T, -T. (T -1}
(d) ~f © rr
1lp 1T+ Ty)
In a reversible cycle, the entropy of the system
(a} increases (b) decreases
(¢} does not change (d) first increases and then decreases

(e) depends on the properties of working substance.
A frictionless heat engine can be 100% efficient only if its exhaust temperature is

(a) equal to its input temperature (b) less than its input temperature
(e) 0°C (d) 0°K (e) — 100°C.

Kelvin-Planck’s law deals with

{a) conservation of energy (b) conservation of heat (¢} conservation of mass

{d) conversion of heat into work (e} conversion of work into heat.

Which of the following statements is correct according to Clausius statement of second law of
thermodynamics ?
(a) It is impossibie to transfer heat from a body at a lower temperature to a body at a higher temperature

(b) It is impossible to transfer heat from a body at a lower temperature to a body at a higher temperature,
without the aid of an external source.

(c) It is possible to transfer heat from a body at a lower temperature to a body at a higher temperature by
using refrigeration cycle

(d) None of the above.
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15. According to Kelvin-Planck’s statement of second law of thermodynamics

18.

17.

18.

18.

21

(a) It is impossible to construct an engine working on a cyclic process, whose sole purpose is to convert heat
energy into work

(&) It is possible to construct an engine working on a cyclic process, whose sole purpose is to convert the
heat energy into work

(¢} It is impossible to construct a device which while working in a cyclic process produces no effect other
than the transfer of heat from a colder body to a hotter body

(d) When two dissimilar metals are heated at one end and cooled at the other, the e.m.f. developed is
proportional to the difference of their temperatures at the two end.
(e) None of the above.

The property of a working substance which increases or decreases as the heat is supplied or removed in a
reversible manner is known as

(a) enthalpy (b) internal energy

(c) entropy (d) external energy.

The entropy may be expressed as a function of

(@} pressure and temperature {b) temperature and volume
(¢) heat and work (d) all of the above

(2} none of the above.

The change of entropy, when heat is absorbed by the gas is

(a) positive (b) negative (c) positive or negative.
Which of the following statements is correct 7

(a)} 'The increase in entropy is obtained from a given quantity of heat at a low temperature

(b) The change in entropy may be regarded as a measure of the rate of the availability of heat for
transformation into work

(c} The entropy represents the maximum amount of work obtainable per degree drop in temperature
(d) All of the above.
The condition for the reversibility of a cycle is

(a) the pressure and temperature of working substance must not differ, appreciably from those of the

surroundings at any stage in the process

(b) all the processes taking place in the cycle of operation, must be extremely slow

(e) the working parts of the engine must be friction free

(d) there should be no loss of energy during the cycle of operation

(e} all of the above.

In an irreversible process thereis a

(a} loss of heat () no loss of work

(c) gain of heat (d) no gain of heat.
The main cause for the irreversibility is

(@) mechanical and fluid friction (b) unrestricted expansion

(c) heat transfer with a finite temperature difference

(d) all of the above.
The efficiency of the Carnot cycle may be increased by

(a) increasing the highest temperature (b) decreasing the highest temperature

(c) increasing the lowest temperature (d) decreasing the lowest temperature

(e) keeping the lowest temperature constant.
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24. Which of the following is the correct statement ?
(a} All the reversible engines have the same efficiency
(b) All the reversible and irreversible engines have the same efficiency
(e) Irreversible engines have maximum efficiency
(d) All engines are designed as reversible in order to obtain maximum efficiency.

Answers
L (@) 2 (a) 3 (@ 4. b B (e) 6. (e) 7. (b)
8 (B 9. (d) 10. {a) 11. (e} 12, (d) 13, (d) 14. (b)
15. (e} 16. (c) 17. (@) 18. (a) 19. () 20. (e) 21. (a)

22. (d) 23. (d} 24, (a)

THEORETICAL QUESTIONS

1. State the limitations of first law of thermodynamics.
2. What is the difference between a heat engine and a reversed heat engine ?

3. Enumerate the conditions which must be fulfilled by a reversible process. Give some examples of ideal
reversible processes.

4, What is an irreversible process ? Give some examples of irreversible processes.

5. Give the following statements of second law of thermodynamics.
(i) Clausius statement
(ii) Kelvin-Planck statement.
6. Define heat engine, refrigerator and heat pump.
7. What is the perpetual motion machine of the second kind 7
8. What do you mean by ‘Thermodynamic temperature’ ?
9. What do you mean by ‘Clausius inequality’ ?

10, Describe the working of a Carnot cycle.
11. Derive an expression for the efficiency of the reversible heat engine.
12. What do you mean by the term ‘Entropy’ ?
13. What are the characteristics of entropy ?
14. Prove that entropy is a property of a system.
15. Derive an expression for the change in entropy of the universe.
16. What is a temperature-entropy diagram ?
17. Derive expresasions for entropy changes for a closed system in the following cases :
(i) General case for change of entropy of a gas

(ii} Heating a gas at constant volume

(iiz) Heating a gas at constant pressure

(fv) Polytropic process.
18. Give an expression for entropy changes for an open system.

UNSOLVED EXAMPLES

Heat Engines and Reversible Heat Engines

1. A cyclic heat engine operates between a source temperature of 800°C and a sink temperature of 30°C.
What is the least rate of heat rejection per kW net output of the engine ? [Ans. 0.392 kW]
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2.

7.

A domestic food freezer maintains a temperature of — 15°C. The ambient air temperature is 30°C. If heat
leaks into the freezer at the continuous rate of 1.75 kJ/s what is the least power necessary to pump this
heat out continuonsly. [Ans. 0.31 kW]
A reversible heat engine operates between two reservoirs at temperatures of 600°C and 40°C. The engine
drives a reversible refrigerator which operates between reservoirs at temperatures of 40°C and — 20°C.
The heat transfer to the heat engine is 2000 kJ and the net work output for the combined engine refrigera-
tor is 360 kJ. () Calculate the heat transfer to the refrigerant and the net heat transfer to the reservoir at
40°C. (ii) Reconsider (i) given that the efficiency of the heat engine and the C.Q.P. of the refrigerator are
each 40 per cent of their maximum possible values.

[Ans. Heat rejection to 40°C reservoir (i) 5539 kJ ; (i) 1899.6 kJ]
A heat engine is supplied heat at the rate of 1700 kd/min and gives an output of 9 kW. Determine the

thermal efficiency and the rate of heat rejection. [Ans. 31.76% ; 9.333 kJ/s]
What is the highest possible theoretical efficiency of a heat engine operating with a hot reservoir of furnace
gases at 2000°C when the cooling water available is at 10°C ? [Ans. 87.54%]

A Carnot cycle operates between source and sink temperatures of 260°C and — 17.8°C. If the system
receives 100 kJ from the source, find (i) efficiency of the system, (ii) the net work tranafer, (iii) heat
rejected to the sink. [Ans. 52.2% ; 52.2 kJ ; 47.8 kJ1
Source A can supply energy at a rate of 11000 kJ/min at 320°C. A second source B can supply energy at a
rate of 110000 kJ/min at 68°C. Which source A or B, would you choose to supply energy to an ideal
reversible engine that is te produce large amount of power if the temperature of the surroundings
is 40°C ? [Ans. Source B]
A fish freezing plant requires 50 tons of refrigeration. The freezing temperature is — 40°C while the
ambient temperature is 35°C. If the performance of the plant is 15% of the theoretical reversed Carnot
cycle working within the same temperature limits, ealeulate the power required. {Ans, 375 kW]

Take 1 ton = 210 kJ/ min.

Clausius Inequality

9

A heat engine is supplied with 278 kJ/s of heat at a constant fixed temperature of 283°C and the heat
rejection takes place at 5°C. The following results were reported : () 208 kJ/s are rejected, (if) 139 kJ/s are
rejected, (ii) 70 kd/s are rejected.
Clasgsify which of the results report a reversible cycle or irreversible cycle or impossible results.

[Ans. (i) Irreversible (ii) Reversible (iif) Tmpossible]

Entropy

10.

11.

13.

Air at 15°C and 1.05 bar occupies 0.02 m®. The air is heated at constant volume until the pressure is 4.2 bar,
and then cooled at constant pressure back to the original temperature. Calculate the net heat flow to or
from the air and the net entropy change.
Sketch the process on a s diagram,

[Ans. Heat rejected = 6.3 kJ, decrease in entropy of air = 0.0101 kJ/K]
0.03 m? of nitrogen contained in a cylinder behind a piston is initially at 1.05 bar and 15°C. The gas is
compressed isothermally and reversibly until the pressure is 4.2 bar, Calculate the change of entropy, the
heat flow, and the work done, and sketch the process on ap-v and 7T-s diagrams. Assume nitrogen to act as
a perfect gas. Molecular weight of nitrogen = 28.

[Ans. 0.01516 kJ/K (decrease) ; 4.37 kJ (heat rejected) ; 4.37 kJ]

Calculate the change of entropy of 1 kg of air expanding polytropically in a cylinder behind a piston from
6.3 bar and 550°C to 1.05 bar. The index of expansion is 1.3. [Ans. 0.1 kJ/kg K (increase)]
0.05 kg of carbon dioxide (molecular weight = 44} is compressed from 1 bar, 15°C, until the pressure is
8.3 bar, and the volume is then 0.004 m3. Calculate the change of entropy. Take¢_for carbon dioxide as
0.88 kJ/kg K, and assume carbon dioxide to be a perfect gas. [Ans. 0.0113 kJ/K (decrease)]
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In an air turbine the air expands from 6.8 bar and 430°C to 1.013 bar and 150°C. The heat loss from the
turbine can be assumed to be negligible. Show that the process is irreversible, and calculate the change of
entropy per kg of air. [Ans. 0.0355 kJ/kg K (increase)]
() One kg of water at 273 K is brought into contact with a heat reservoir at 373 K. When the water has
reached 373 K, find the entropy change of the water of the heat reservoir, and of the universe.
(ii) If water is heated from 273 K to 373 K by first bringing it in contact with a reservoir at 323 K and then
with reservoir at 373 K, what will the entropy change of the universe be ?
[Ams. (i) 0.183 kJ/K ; (ii) 0.098 kJ/K]
One kg of ice at — 5°C is exposed to the atmosphere which is at 20°C. The ice melts and comes into thermal
equilibrium with the atmosphere.
(i) Determine the entropy increase of the universe.
(ii) What is the minimum amount of work necessary to convert the water back into ice at - 5°C 7¢_ of ice
is 2,093 kJd/kg °C and the latent heat of fusion of ice is 333.3 kJ/kg.
[Ans. (i) 0.0949 kJ/K (increase) (i) 28.5 kJ]
A system has a heat capacity at constant volume C, = AT?, where A = 0.042 J/K®. The system is originally
at 200 K and a thermal reservoir at 100 K is available. What is the maximum amount of work that can be
recovered as the system is cooled down to the temperature of the reservoir ? [Ans. 35 kJ]
A fluid undergoes a reversible adiabatic compression from 0.5 MPa, 0.2 m® to 0.05 m® according to the law,
pvl? = constant. Determine the change in enthalpy, internal energy and entropy, and the heat transfer and
work transfer during the process. [Ans. 223.3kJ ; 171.77kJ, ; zero; zero; — 17177 kJ}
A rigid cylinder containing 0.006 m? of nitrogen (molecular weight 28) at 1.04 bar, 15°C, is heated reversibly
until the temperature is 90°C. Calculate the change of entropy and the heat supplied. Sketch the process
on T-s diagram. Take the isentropic index, ¥, for nitrogen as 1.4, and assume that nitrogen is a perfect gas.
[Ans. 0.00125 kJ/K ; 0.407 kd]
1 m? of air is heated reversibly at constant pressure from 15°C to 300°C, and is then cooled reversibly at
constant volume back to the initial temperature. The initial pressure is 1.03 bar. Calculate the net heat flow
and overall change of entropy, and sketch the process on a T-s diagram. [Ans. 101.5 kJ ; 0.246 kJ/K]
1 kg of air is allowed to expand reversibly in a cylinder behind a piston in such a way that the temperature
remains constant at 260°C while the volume is doubled. The piston is then moved in, and heat is rejected by
the air reversibly at constant pressure until the volume is the same as it was initially. Calculate the net heat
flow and the overall change of entropy. Sketch the processes on a T-s diagram.

[Ans. - 161.9 kJ/kg ; — 0.497 kJ/kg K]
1kg of air at 1.013 bar, 17°C, is compressed according to a law pv*? = constant, until the pressure is 5 bar.
Calculate the change of entropy and sketch the process on a T-s diagram, indicating the area, which
represents the heat flow. fAns. - 0.0885 kJ/kg Ki
0.06 m® of ethane (molecular weight 30), at 6.9 bar and 60°C, is allowed to expand isentropically in a cylinder
behind a piston to a pressure of 1.05 bar and a temperature of 107°C. Calculatey, R, ¢ ' €, for ethane, and
calculate the work done during the expansion. Assume ethane to be a perfect gas.

The same mass of ethane at 1.05 bar, 107°C, is compressed to 6.9 bar according to a law pv'* = constant.
Calculate the final temperature of the ethane and the heat flow to or from the cylinder walls during the
compression. Calculate also the change of entropy during the compression, and sketch both processes on
p-v and T-s diagrams.

[Ans. 1.219;0.277 kJ/kg K ; 1.542 kJ/kg K ; 1.265 kJ/kg K ; 54.2 kJ ; 378°C ; 43.4 kJ ; 0.0867 kJ/K]
In a reversible process the rate of heat transfer to the system per unit temperature rise is given

by -g% = 0.5 kJ/°C. Find the change in entropy of the system if its temperature rises from 500 K to 800 K.
[Ans. 0.235 kJ/kg°C]
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25.

In a reversible cycle 100 kJ of heat is received at 500 K ; then an adiabatic expansion occurs to 400 K, at
which temperature 50 kJ of heat is received, then a further adiabatic expansion to 300 K at which
temperature 100 kJ of heat is rejected :
(i) Find the change in entropy which occcurs as the system is restored to its initial state in the remainder
of the cycle.

(i} i during the remainder of the cycle heat is transferred only at 400 K, how much heat is transferred and

in what direction ? [Ans, 0.008 kJ/K ; + 3.2 kd]
1 kg of air is compressed according to the law pv'? = constant from 1.03 bar and 15°C to 16.45 bar.
Caleulate the change in entropy. [Ans. 0.255 kJ/kg K}

A quantity of gas (mean molecular weight 36.2) is compressed according to the law pv® = constant, the
initial pressure and volume being 1.03 bar and 0.98 m® respectively. The temperature at the start of
compression is 17°C and at the end it is 115°C. The amount of heat rejected during compression is 3.78 kJ,
c,= 0.92. Calculate :

(i) Value of n, (#) Final pressure, (iif) Change in entropy.
[Ans. (/) 1.33 ; (i) 1.107 bar ; (iif) 0.228 kJ/kg K]



6

Availability and Irreversibility

6.1. Available and unavailable energy. 6.2. Available energy referred to a cycle. 6.3. Decrease in
available energy when heat is transferred through a finite temperature difference. 6.4. Availability
in non-flow systems. 6.5. Availability in steady flow systems. 6.6. Helmholtz and Gibbs functions.
6.7. Irreversibility. 6.8. Effectiveness—Highlights—Objective Type Questions—Theoretical
Questions—Unsolved Examples.

6.1. AVAILABLE AND UNAVAILABLE ENERGY

There are many forms in which an energy can exist. But even under ideal conditions all
these forms cannot be converted completely into work. This indicates that energy has two parts :

— Available part.
— Unavailable part.

‘Available energy’ is the maximum portion of energy which could be converted into
useful work by ideal processes which reduce the system to a dead state (a state in equilibrium
with the earth and its atmosphere). Because there can be only one value for maximum work which
the system alone could do while descending to its dead state, it follows immediately that ‘Available
energy’ is a property.

A system which has a pressure difference from that of surroundings, work can be obtained
from an expansion process, and if the system has a different temperature, heat can be transferred
to a cycle and work can be obtained. But when the temperature and pressure becomes equal to that
of the earth, transfer of energy ceases, and although the system contains internal energy, this
energy is unavailable.

Summarily available energy denote, the latent capability of energy to do work, and in this
sense it can be applied to energy in the system or in the surroundings.

The theoretical maximum amount of work which can be obtained from a system at any
state p, and T, when operating with a reservoir at the constant pressure and temperature p, and
T, is called ‘availability’.

6.2. AVAILABLE ENERGY REFERRED TO A CYCLE

The available energy (A.E.) or the available part of the energy supplied is the maximum
work output obtainable from a certain heat input in a cyclic heat engine (Fig. 6.1). The minimum
energy that has to be rejected to the sink by the second law is called the unavailable energy
(U.E.), or the unavailable part of the energy supplied.

- Q, = AE. + UE.
or W, =AE =@ -UE

306



